Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(16+3\sqrt{3}\right)}{\left(16-3\sqrt{3}\right)\left(16+3\sqrt{3}\right)}
Rationalize the denominator of \frac{3}{16-3\sqrt{3}} by multiplying numerator and denominator by 16+3\sqrt{3}.
\frac{3\left(16+3\sqrt{3}\right)}{16^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(16-3\sqrt{3}\right)\left(16+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(16+3\sqrt{3}\right)}{256-\left(-3\sqrt{3}\right)^{2}}
Calculate 16 to the power of 2 and get 256.
\frac{3\left(16+3\sqrt{3}\right)}{256-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{3\left(16+3\sqrt{3}\right)}{256-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{3\left(16+3\sqrt{3}\right)}{256-9\times 3}
The square of \sqrt{3} is 3.
\frac{3\left(16+3\sqrt{3}\right)}{256-27}
Multiply 9 and 3 to get 27.
\frac{3\left(16+3\sqrt{3}\right)}{229}
Subtract 27 from 256 to get 229.
\frac{48+9\sqrt{3}}{229}
Use the distributive property to multiply 3 by 16+3\sqrt{3}.