Solve for x
x = \frac{751}{151} = 4\frac{147}{151} \approx 4.973509934
Graph
Share
Copied to clipboard
\frac{3}{16}x+\frac{3}{16}\left(-1\right)-\frac{5}{12}\left(x-4\right)=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Use the distributive property to multiply \frac{3}{16} by x-1.
\frac{3}{16}x-\frac{3}{16}-\frac{5}{12}\left(x-4\right)=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Multiply \frac{3}{16} and -1 to get -\frac{3}{16}.
\frac{3}{16}x-\frac{3}{16}-\frac{5}{12}x-\frac{5}{12}\left(-4\right)=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Use the distributive property to multiply -\frac{5}{12} by x-4.
\frac{3}{16}x-\frac{3}{16}-\frac{5}{12}x+\frac{-5\left(-4\right)}{12}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Express -\frac{5}{12}\left(-4\right) as a single fraction.
\frac{3}{16}x-\frac{3}{16}-\frac{5}{12}x+\frac{20}{12}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Multiply -5 and -4 to get 20.
\frac{3}{16}x-\frac{3}{16}-\frac{5}{12}x+\frac{5}{3}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
-\frac{11}{48}x-\frac{3}{16}+\frac{5}{3}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Combine \frac{3}{16}x and -\frac{5}{12}x to get -\frac{11}{48}x.
-\frac{11}{48}x-\frac{9}{48}+\frac{80}{48}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Least common multiple of 16 and 3 is 48. Convert -\frac{3}{16} and \frac{5}{3} to fractions with denominator 48.
-\frac{11}{48}x+\frac{-9+80}{48}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Since -\frac{9}{48} and \frac{80}{48} have the same denominator, add them by adding their numerators.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}\left(x-6\right)+\frac{3}{4}
Add -9 and 80 to get 71.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x+\frac{2}{5}\left(-6\right)+\frac{3}{4}
Use the distributive property to multiply \frac{2}{5} by x-6.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x+\frac{2\left(-6\right)}{5}+\frac{3}{4}
Express \frac{2}{5}\left(-6\right) as a single fraction.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x+\frac{-12}{5}+\frac{3}{4}
Multiply 2 and -6 to get -12.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x-\frac{12}{5}+\frac{3}{4}
Fraction \frac{-12}{5} can be rewritten as -\frac{12}{5} by extracting the negative sign.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x-\frac{48}{20}+\frac{15}{20}
Least common multiple of 5 and 4 is 20. Convert -\frac{12}{5} and \frac{3}{4} to fractions with denominator 20.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x+\frac{-48+15}{20}
Since -\frac{48}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
-\frac{11}{48}x+\frac{71}{48}=\frac{2}{5}x-\frac{33}{20}
Add -48 and 15 to get -33.
-\frac{11}{48}x+\frac{71}{48}-\frac{2}{5}x=-\frac{33}{20}
Subtract \frac{2}{5}x from both sides.
-\frac{151}{240}x+\frac{71}{48}=-\frac{33}{20}
Combine -\frac{11}{48}x and -\frac{2}{5}x to get -\frac{151}{240}x.
-\frac{151}{240}x=-\frac{33}{20}-\frac{71}{48}
Subtract \frac{71}{48} from both sides.
-\frac{151}{240}x=-\frac{396}{240}-\frac{355}{240}
Least common multiple of 20 and 48 is 240. Convert -\frac{33}{20} and \frac{71}{48} to fractions with denominator 240.
-\frac{151}{240}x=\frac{-396-355}{240}
Since -\frac{396}{240} and \frac{355}{240} have the same denominator, subtract them by subtracting their numerators.
-\frac{151}{240}x=-\frac{751}{240}
Subtract 355 from -396 to get -751.
x=-\frac{751}{240}\left(-\frac{240}{151}\right)
Multiply both sides by -\frac{240}{151}, the reciprocal of -\frac{151}{240}.
x=\frac{-751\left(-240\right)}{240\times 151}
Multiply -\frac{751}{240} times -\frac{240}{151} by multiplying numerator times numerator and denominator times denominator.
x=\frac{180240}{36240}
Do the multiplications in the fraction \frac{-751\left(-240\right)}{240\times 151}.
x=\frac{751}{151}
Reduce the fraction \frac{180240}{36240} to lowest terms by extracting and canceling out 240.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}