Evaluate
\frac{15}{7}\approx 2.142857143
Factor
\frac{3 \cdot 5}{7} = 2\frac{1}{7} = 2.142857142857143
Share
Copied to clipboard
\frac{\frac{3\times 7}{14}}{\frac{1}{2}+\frac{1}{5}}
Express \frac{3}{14}\times 7 as a single fraction.
\frac{\frac{21}{14}}{\frac{1}{2}+\frac{1}{5}}
Multiply 3 and 7 to get 21.
\frac{\frac{3}{2}}{\frac{1}{2}+\frac{1}{5}}
Reduce the fraction \frac{21}{14} to lowest terms by extracting and canceling out 7.
\frac{\frac{3}{2}}{\frac{5}{10}+\frac{2}{10}}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{\frac{3}{2}}{\frac{5+2}{10}}
Since \frac{5}{10} and \frac{2}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{2}}{\frac{7}{10}}
Add 5 and 2 to get 7.
\frac{3}{2}\times \frac{10}{7}
Divide \frac{3}{2} by \frac{7}{10} by multiplying \frac{3}{2} by the reciprocal of \frac{7}{10}.
\frac{3\times 10}{2\times 7}
Multiply \frac{3}{2} times \frac{10}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{30}{14}
Do the multiplications in the fraction \frac{3\times 10}{2\times 7}.
\frac{15}{7}
Reduce the fraction \frac{30}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}