Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{\left(12\sqrt{5}-\sqrt{3}\right)\left(12\sqrt{5}+\sqrt{3}\right)}
Rationalize the denominator of \frac{3}{12\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by 12\sqrt{5}+\sqrt{3}.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{\left(12\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(12\sqrt{5}-\sqrt{3}\right)\left(12\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{12^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Expand \left(12\sqrt{5}\right)^{2}.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{144\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Calculate 12 to the power of 2 and get 144.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{144\times 5-\left(\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{720-\left(\sqrt{3}\right)^{2}}
Multiply 144 and 5 to get 720.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{720-3}
The square of \sqrt{3} is 3.
\frac{3\left(12\sqrt{5}+\sqrt{3}\right)}{717}
Subtract 3 from 720 to get 717.
\frac{1}{239}\left(12\sqrt{5}+\sqrt{3}\right)
Divide 3\left(12\sqrt{5}+\sqrt{3}\right) by 717 to get \frac{1}{239}\left(12\sqrt{5}+\sqrt{3}\right).
\frac{1}{239}\times 12\sqrt{5}+\frac{1}{239}\sqrt{3}
Use the distributive property to multiply \frac{1}{239} by 12\sqrt{5}+\sqrt{3}.
\frac{12}{239}\sqrt{5}+\frac{1}{239}\sqrt{3}
Multiply \frac{1}{239} and 12 to get \frac{12}{239}.