Evaluate
\frac{\sqrt{2}}{2}\approx 0.707106781
Share
Copied to clipboard
\frac{3}{10}\sqrt{5}\sqrt{2}\times \frac{2}{5}\sqrt{5}+\frac{-\sqrt{50}}{50}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{3}{10}\times 5\times \frac{2}{5}\sqrt{2}+\frac{-\sqrt{50}}{50}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{3\times 5}{10}\times \frac{2}{5}\sqrt{2}+\frac{-\sqrt{50}}{50}
Express \frac{3}{10}\times 5 as a single fraction.
\frac{15}{10}\times \frac{2}{5}\sqrt{2}+\frac{-\sqrt{50}}{50}
Multiply 3 and 5 to get 15.
\frac{3}{2}\times \frac{2}{5}\sqrt{2}+\frac{-\sqrt{50}}{50}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{3\times 2}{2\times 5}\sqrt{2}+\frac{-\sqrt{50}}{50}
Multiply \frac{3}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}\sqrt{2}+\frac{-\sqrt{50}}{50}
Cancel out 2 in both numerator and denominator.
\frac{3}{5}\sqrt{2}+\frac{-5\sqrt{2}}{50}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{3}{5}\sqrt{2}-\frac{1}{10}\sqrt{2}
Divide -5\sqrt{2} by 50 to get -\frac{1}{10}\sqrt{2}.
\frac{1}{2}\sqrt{2}
Combine \frac{3}{5}\sqrt{2} and -\frac{1}{10}\sqrt{2} to get \frac{1}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}