Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}
Rationalize the denominator of \frac{3}{1-\sqrt{7}} by multiplying numerator and denominator by 1+\sqrt{7}.
\frac{3\left(1+\sqrt{7}\right)}{1^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(1+\sqrt{7}\right)}{1-7}
Square 1. Square \sqrt{7}.
\frac{3\left(1+\sqrt{7}\right)}{-6}
Subtract 7 from 1 to get -6.
-\frac{1}{2}\left(1+\sqrt{7}\right)
Divide 3\left(1+\sqrt{7}\right) by -6 to get -\frac{1}{2}\left(1+\sqrt{7}\right).
-\frac{1}{2}-\frac{1}{2}\sqrt{7}
Use the distributive property to multiply -\frac{1}{2} by 1+\sqrt{7}.