Verify
false
Share
Copied to clipboard
\frac{3}{1-\left(1+\frac{1}{5}\right)}=\frac{69}{17}
Divide 1 by \frac{1}{1+\frac{1}{5}} by multiplying 1 by the reciprocal of \frac{1}{1+\frac{1}{5}}.
\frac{3}{1-\left(\frac{5}{5}+\frac{1}{5}\right)}=\frac{69}{17}
Convert 1 to fraction \frac{5}{5}.
\frac{3}{1-\frac{5+1}{5}}=\frac{69}{17}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{3}{1-\frac{6}{5}}=\frac{69}{17}
Add 5 and 1 to get 6.
\frac{3}{\frac{5}{5}-\frac{6}{5}}=\frac{69}{17}
Convert 1 to fraction \frac{5}{5}.
\frac{3}{\frac{5-6}{5}}=\frac{69}{17}
Since \frac{5}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{-\frac{1}{5}}=\frac{69}{17}
Subtract 6 from 5 to get -1.
3\left(-5\right)=\frac{69}{17}
Divide 3 by -\frac{1}{5} by multiplying 3 by the reciprocal of -\frac{1}{5}.
-15=\frac{69}{17}
Multiply 3 and -5 to get -15.
-\frac{255}{17}=\frac{69}{17}
Convert -15 to fraction -\frac{255}{17}.
\text{false}
Compare -\frac{255}{17} and \frac{69}{17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}