Evaluate
\frac{9}{80}=0.1125
Factor
\frac{3 ^ {2}}{2 ^ {4} \cdot 5} = 0.1125
Share
Copied to clipboard
\frac{3}{2\times 4\times 5}+\frac{4}{2\times 3\times 5\times 6}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 1 and 2 to get 2.
\frac{3}{8\times 5}+\frac{4}{2\times 3\times 5\times 6}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 2 and 4 to get 8.
\frac{3}{40}+\frac{4}{2\times 3\times 5\times 6}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 8 and 5 to get 40.
\frac{3}{40}+\frac{4}{6\times 5\times 6}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 2 and 3 to get 6.
\frac{3}{40}+\frac{4}{30\times 6}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 6 and 5 to get 30.
\frac{3}{40}+\frac{4}{180}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 30 and 6 to get 180.
\frac{3}{40}+\frac{1}{45}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Reduce the fraction \frac{4}{180} to lowest terms by extracting and canceling out 4.
\frac{27}{360}+\frac{8}{360}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Least common multiple of 40 and 45 is 360. Convert \frac{3}{40} and \frac{1}{45} to fractions with denominator 360.
\frac{27+8}{360}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Since \frac{27}{360} and \frac{8}{360} have the same denominator, add them by adding their numerators.
\frac{35}{360}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Add 27 and 8 to get 35.
\frac{7}{72}+\frac{5}{3\times 4\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Reduce the fraction \frac{35}{360} to lowest terms by extracting and canceling out 5.
\frac{7}{72}+\frac{5}{12\times 6\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 3 and 4 to get 12.
\frac{7}{72}+\frac{5}{72\times 7}+\frac{6}{4\times 5\times 7\times 8}
Multiply 12 and 6 to get 72.
\frac{7}{72}+\frac{5}{504}+\frac{6}{4\times 5\times 7\times 8}
Multiply 72 and 7 to get 504.
\frac{49}{504}+\frac{5}{504}+\frac{6}{4\times 5\times 7\times 8}
Least common multiple of 72 and 504 is 504. Convert \frac{7}{72} and \frac{5}{504} to fractions with denominator 504.
\frac{49+5}{504}+\frac{6}{4\times 5\times 7\times 8}
Since \frac{49}{504} and \frac{5}{504} have the same denominator, add them by adding their numerators.
\frac{54}{504}+\frac{6}{4\times 5\times 7\times 8}
Add 49 and 5 to get 54.
\frac{3}{28}+\frac{6}{4\times 5\times 7\times 8}
Reduce the fraction \frac{54}{504} to lowest terms by extracting and canceling out 18.
\frac{3}{28}+\frac{6}{20\times 7\times 8}
Multiply 4 and 5 to get 20.
\frac{3}{28}+\frac{6}{140\times 8}
Multiply 20 and 7 to get 140.
\frac{3}{28}+\frac{6}{1120}
Multiply 140 and 8 to get 1120.
\frac{3}{28}+\frac{3}{560}
Reduce the fraction \frac{6}{1120} to lowest terms by extracting and canceling out 2.
\frac{60}{560}+\frac{3}{560}
Least common multiple of 28 and 560 is 560. Convert \frac{3}{28} and \frac{3}{560} to fractions with denominator 560.
\frac{60+3}{560}
Since \frac{60}{560} and \frac{3}{560} have the same denominator, add them by adding their numerators.
\frac{63}{560}
Add 60 and 3 to get 63.
\frac{9}{80}
Reduce the fraction \frac{63}{560} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}