Evaluate
-\frac{11}{6}-\frac{3}{y}
Expand
-\frac{11}{6}-\frac{3}{y}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 3 } { - y } - ( \frac { 4 } { 12 } - \frac { 9 } { - 6 } )
Share
Copied to clipboard
\frac{3}{-y}-\left(\frac{1}{3}-\frac{9}{-6}\right)
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{3}{-y}-\left(\frac{1}{3}-\left(-\frac{3}{2}\right)\right)
Reduce the fraction \frac{9}{-6} to lowest terms by extracting and canceling out 3.
\frac{3}{-y}-\left(\frac{1}{3}+\frac{3}{2}\right)
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{3}{-y}-\left(\frac{2}{6}+\frac{9}{6}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{3}{2} to fractions with denominator 6.
\frac{3}{-y}-\frac{2+9}{6}
Since \frac{2}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
\frac{3}{-y}-\frac{11}{6}
Add 2 and 9 to get 11.
\frac{3\left(-6\right)}{6y}-\frac{11y}{6y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -y and 6 is 6y. Multiply \frac{3}{-y} times \frac{-6}{-6}. Multiply \frac{11}{6} times \frac{y}{y}.
\frac{3\left(-6\right)-11y}{6y}
Since \frac{3\left(-6\right)}{6y} and \frac{11y}{6y} have the same denominator, subtract them by subtracting their numerators.
\frac{-18-11y}{6y}
Do the multiplications in 3\left(-6\right)-11y.
\frac{3}{-y}-\left(\frac{1}{3}-\frac{9}{-6}\right)
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{3}{-y}-\left(\frac{1}{3}-\left(-\frac{3}{2}\right)\right)
Reduce the fraction \frac{9}{-6} to lowest terms by extracting and canceling out 3.
\frac{3}{-y}-\left(\frac{1}{3}+\frac{3}{2}\right)
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{3}{-y}-\left(\frac{2}{6}+\frac{9}{6}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{3}{2} to fractions with denominator 6.
\frac{3}{-y}-\frac{2+9}{6}
Since \frac{2}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
\frac{3}{-y}-\frac{11}{6}
Add 2 and 9 to get 11.
\frac{3\left(-6\right)}{6y}-\frac{11y}{6y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -y and 6 is 6y. Multiply \frac{3}{-y} times \frac{-6}{-6}. Multiply \frac{11}{6} times \frac{y}{y}.
\frac{3\left(-6\right)-11y}{6y}
Since \frac{3\left(-6\right)}{6y} and \frac{11y}{6y} have the same denominator, subtract them by subtracting their numerators.
\frac{-18-11y}{6y}
Do the multiplications in 3\left(-6\right)-11y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}