Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+2\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x+3\right)\left(x-4\right) is \left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{3}{\left(x-1\right)\left(x+2\right)} times \frac{\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}. Multiply \frac{1}{\left(x+3\right)\left(x-4\right)} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{3\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x+2\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{3\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(x-1\right)\left(x+2\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+9x-12x-36-x^{2}-2x+x+2}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in 3\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x+2\right).
\frac{2x^{2}-4x-34}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 3x^{2}+9x-12x-36-x^{2}-2x+x+2.
\frac{2x^{2}-4x-34}{x^{4}-15x^{2}-10x+24}
Expand \left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right).
\frac{3\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+2\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x+3\right)\left(x-4\right) is \left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{3}{\left(x-1\right)\left(x+2\right)} times \frac{\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}. Multiply \frac{1}{\left(x+3\right)\left(x-4\right)} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{3\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x+2\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{3\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(x-1\right)\left(x+2\right)}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+9x-12x-36-x^{2}-2x+x+2}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in 3\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x+2\right).
\frac{2x^{2}-4x-34}{\left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 3x^{2}+9x-12x-36-x^{2}-2x+x+2.
\frac{2x^{2}-4x-34}{x^{4}-15x^{2}-10x+24}
Expand \left(x-4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right).