Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{x^{2}+x+6x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Apply the distributive property by multiplying each term of x+6 by each term of x+1.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Combine x and 6x to get 7x.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-2^{2}}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-4}
Calculate 2 to the power of 2 and get 4.
\frac{3\times 5x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply \frac{3}{x^{2}+7x+6} times \frac{5x}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{15x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply 3 and 5 to get 15.
\frac{15x}{x^{4}-4x^{2}+7x^{3}-28x+6x^{2}-24}
Apply the distributive property by multiplying each term of x^{2}+7x+6 by each term of x^{2}-4.
\frac{15x}{x^{4}+2x^{2}+7x^{3}-28x-24}
Combine -4x^{2} and 6x^{2} to get 2x^{2}.
\frac{3}{x^{2}+x+6x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Apply the distributive property by multiplying each term of x+6 by each term of x+1.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Combine x and 6x to get 7x.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-2^{2}}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-4}
Calculate 2 to the power of 2 and get 4.
\frac{3\times 5x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply \frac{3}{x^{2}+7x+6} times \frac{5x}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{15x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply 3 and 5 to get 15.
\frac{15x}{x^{4}-4x^{2}+7x^{3}-28x+6x^{2}-24}
Apply the distributive property by multiplying each term of x^{2}+7x+6 by each term of x^{2}-4.
\frac{15x}{x^{4}+2x^{2}+7x^{3}-28x-24}
Combine -4x^{2} and 6x^{2} to get 2x^{2}.