Evaluate
\frac{15x}{\left(x+1\right)\left(x+6\right)\left(x^{2}-4\right)}
Expand
\frac{15x}{\left(x+1\right)\left(x+6\right)\left(x^{2}-4\right)}
Graph
Share
Copied to clipboard
\frac{3}{x^{2}+x+6x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Apply the distributive property by multiplying each term of x+6 by each term of x+1.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Combine x and 6x to get 7x.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-2^{2}}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-4}
Calculate 2 to the power of 2 and get 4.
\frac{3\times 5x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply \frac{3}{x^{2}+7x+6} times \frac{5x}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{15x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply 3 and 5 to get 15.
\frac{15x}{x^{4}-4x^{2}+7x^{3}-28x+6x^{2}-24}
Apply the distributive property by multiplying each term of x^{2}+7x+6 by each term of x^{2}-4.
\frac{15x}{x^{4}+2x^{2}+7x^{3}-28x-24}
Combine -4x^{2} and 6x^{2} to get 2x^{2}.
\frac{3}{x^{2}+x+6x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Apply the distributive property by multiplying each term of x+6 by each term of x+1.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{\left(x+2\right)\left(x-2\right)}
Combine x and 6x to get 7x.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-2^{2}}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{x^{2}+7x+6}\times \frac{5x}{x^{2}-4}
Calculate 2 to the power of 2 and get 4.
\frac{3\times 5x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply \frac{3}{x^{2}+7x+6} times \frac{5x}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{15x}{\left(x^{2}+7x+6\right)\left(x^{2}-4\right)}
Multiply 3 and 5 to get 15.
\frac{15x}{x^{4}-4x^{2}+7x^{3}-28x+6x^{2}-24}
Apply the distributive property by multiplying each term of x^{2}+7x+6 by each term of x^{2}-4.
\frac{15x}{x^{4}+2x^{2}+7x^{3}-28x-24}
Combine -4x^{2} and 6x^{2} to get 2x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}