Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and \left(x+2\right)\left(x+3\right) is \left(x+1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{3}{\left(x+1\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{3}{\left(x+2\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{3\left(x+3\right)-3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{3\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} and \frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+9-3x-3}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in 3\left(x+3\right)-3\left(x+1\right).
\frac{6}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 3x+9-3x-3.
\frac{6}{x^{3}+6x^{2}+11x+6}
Expand \left(x+1\right)\left(x+2\right)\left(x+3\right).
\frac{3\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and \left(x+2\right)\left(x+3\right) is \left(x+1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{3}{\left(x+1\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{3}{\left(x+2\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{3\left(x+3\right)-3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{3\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} and \frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+9-3x-3}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in 3\left(x+3\right)-3\left(x+1\right).
\frac{6}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 3x+9-3x-3.
\frac{6}{x^{3}+6x^{2}+11x+6}
Expand \left(x+1\right)\left(x+2\right)\left(x+3\right).