Solve for y
y = \frac{\sqrt{25933} - 73}{34} \approx 2.589331258
y=\frac{-\sqrt{25933}-73}{34}\approx -6.883448905
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 3 } { ( 2 y - 5 ) } + \frac { 2 } { y + 7 } = 17
Share
Copied to clipboard
\left(y+7\right)\times 3+\left(2y-5\right)\times 2=17\left(2y-5\right)\left(y+7\right)
Variable y cannot be equal to any of the values -7,\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2y-5\right)\left(y+7\right), the least common multiple of 2y-5,y+7.
3y+21+\left(2y-5\right)\times 2=17\left(2y-5\right)\left(y+7\right)
Use the distributive property to multiply y+7 by 3.
3y+21+4y-10=17\left(2y-5\right)\left(y+7\right)
Use the distributive property to multiply 2y-5 by 2.
7y+21-10=17\left(2y-5\right)\left(y+7\right)
Combine 3y and 4y to get 7y.
7y+11=17\left(2y-5\right)\left(y+7\right)
Subtract 10 from 21 to get 11.
7y+11=\left(34y-85\right)\left(y+7\right)
Use the distributive property to multiply 17 by 2y-5.
7y+11=34y^{2}+153y-595
Use the distributive property to multiply 34y-85 by y+7 and combine like terms.
7y+11-34y^{2}=153y-595
Subtract 34y^{2} from both sides.
7y+11-34y^{2}-153y=-595
Subtract 153y from both sides.
-146y+11-34y^{2}=-595
Combine 7y and -153y to get -146y.
-146y+11-34y^{2}+595=0
Add 595 to both sides.
-146y+606-34y^{2}=0
Add 11 and 595 to get 606.
-34y^{2}-146y+606=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-146\right)±\sqrt{\left(-146\right)^{2}-4\left(-34\right)\times 606}}{2\left(-34\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -34 for a, -146 for b, and 606 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-146\right)±\sqrt{21316-4\left(-34\right)\times 606}}{2\left(-34\right)}
Square -146.
y=\frac{-\left(-146\right)±\sqrt{21316+136\times 606}}{2\left(-34\right)}
Multiply -4 times -34.
y=\frac{-\left(-146\right)±\sqrt{21316+82416}}{2\left(-34\right)}
Multiply 136 times 606.
y=\frac{-\left(-146\right)±\sqrt{103732}}{2\left(-34\right)}
Add 21316 to 82416.
y=\frac{-\left(-146\right)±2\sqrt{25933}}{2\left(-34\right)}
Take the square root of 103732.
y=\frac{146±2\sqrt{25933}}{2\left(-34\right)}
The opposite of -146 is 146.
y=\frac{146±2\sqrt{25933}}{-68}
Multiply 2 times -34.
y=\frac{2\sqrt{25933}+146}{-68}
Now solve the equation y=\frac{146±2\sqrt{25933}}{-68} when ± is plus. Add 146 to 2\sqrt{25933}.
y=\frac{-\sqrt{25933}-73}{34}
Divide 146+2\sqrt{25933} by -68.
y=\frac{146-2\sqrt{25933}}{-68}
Now solve the equation y=\frac{146±2\sqrt{25933}}{-68} when ± is minus. Subtract 2\sqrt{25933} from 146.
y=\frac{\sqrt{25933}-73}{34}
Divide 146-2\sqrt{25933} by -68.
y=\frac{-\sqrt{25933}-73}{34} y=\frac{\sqrt{25933}-73}{34}
The equation is now solved.
\left(y+7\right)\times 3+\left(2y-5\right)\times 2=17\left(2y-5\right)\left(y+7\right)
Variable y cannot be equal to any of the values -7,\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2y-5\right)\left(y+7\right), the least common multiple of 2y-5,y+7.
3y+21+\left(2y-5\right)\times 2=17\left(2y-5\right)\left(y+7\right)
Use the distributive property to multiply y+7 by 3.
3y+21+4y-10=17\left(2y-5\right)\left(y+7\right)
Use the distributive property to multiply 2y-5 by 2.
7y+21-10=17\left(2y-5\right)\left(y+7\right)
Combine 3y and 4y to get 7y.
7y+11=17\left(2y-5\right)\left(y+7\right)
Subtract 10 from 21 to get 11.
7y+11=\left(34y-85\right)\left(y+7\right)
Use the distributive property to multiply 17 by 2y-5.
7y+11=34y^{2}+153y-595
Use the distributive property to multiply 34y-85 by y+7 and combine like terms.
7y+11-34y^{2}=153y-595
Subtract 34y^{2} from both sides.
7y+11-34y^{2}-153y=-595
Subtract 153y from both sides.
-146y+11-34y^{2}=-595
Combine 7y and -153y to get -146y.
-146y-34y^{2}=-595-11
Subtract 11 from both sides.
-146y-34y^{2}=-606
Subtract 11 from -595 to get -606.
-34y^{2}-146y=-606
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-34y^{2}-146y}{-34}=-\frac{606}{-34}
Divide both sides by -34.
y^{2}+\left(-\frac{146}{-34}\right)y=-\frac{606}{-34}
Dividing by -34 undoes the multiplication by -34.
y^{2}+\frac{73}{17}y=-\frac{606}{-34}
Reduce the fraction \frac{-146}{-34} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{73}{17}y=\frac{303}{17}
Reduce the fraction \frac{-606}{-34} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{73}{17}y+\left(\frac{73}{34}\right)^{2}=\frac{303}{17}+\left(\frac{73}{34}\right)^{2}
Divide \frac{73}{17}, the coefficient of the x term, by 2 to get \frac{73}{34}. Then add the square of \frac{73}{34} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{73}{17}y+\frac{5329}{1156}=\frac{303}{17}+\frac{5329}{1156}
Square \frac{73}{34} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{73}{17}y+\frac{5329}{1156}=\frac{25933}{1156}
Add \frac{303}{17} to \frac{5329}{1156} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{73}{34}\right)^{2}=\frac{25933}{1156}
Factor y^{2}+\frac{73}{17}y+\frac{5329}{1156}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{73}{34}\right)^{2}}=\sqrt{\frac{25933}{1156}}
Take the square root of both sides of the equation.
y+\frac{73}{34}=\frac{\sqrt{25933}}{34} y+\frac{73}{34}=-\frac{\sqrt{25933}}{34}
Simplify.
y=\frac{\sqrt{25933}-73}{34} y=\frac{-\sqrt{25933}-73}{34}
Subtract \frac{73}{34} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}