Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(-1\right)}{\left(x-3\right)\left(2x+1\right)}-\frac{2\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x+1\right)\left(3-x\right) and x-3 is \left(x-3\right)\left(2x+1\right). Multiply \frac{3}{\left(2x+1\right)\left(3-x\right)} times \frac{-1}{-1}. Multiply \frac{2}{x-3} times \frac{2x+1}{2x+1}.
\frac{3\left(-1\right)-2\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}
Since \frac{3\left(-1\right)}{\left(x-3\right)\left(2x+1\right)} and \frac{2\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3-4x-2}{\left(x-3\right)\left(2x+1\right)}
Do the multiplications in 3\left(-1\right)-2\left(2x+1\right).
\frac{-5-4x}{\left(x-3\right)\left(2x+1\right)}
Combine like terms in -3-4x-2.
\frac{-5-4x}{2x^{2}-5x-3}
Expand \left(x-3\right)\left(2x+1\right).
\frac{3\left(-1\right)}{\left(x-3\right)\left(2x+1\right)}-\frac{2\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x+1\right)\left(3-x\right) and x-3 is \left(x-3\right)\left(2x+1\right). Multiply \frac{3}{\left(2x+1\right)\left(3-x\right)} times \frac{-1}{-1}. Multiply \frac{2}{x-3} times \frac{2x+1}{2x+1}.
\frac{3\left(-1\right)-2\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}
Since \frac{3\left(-1\right)}{\left(x-3\right)\left(2x+1\right)} and \frac{2\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3-4x-2}{\left(x-3\right)\left(2x+1\right)}
Do the multiplications in 3\left(-1\right)-2\left(2x+1\right).
\frac{-5-4x}{\left(x-3\right)\left(2x+1\right)}
Combine like terms in -3-4x-2.
\frac{-5-4x}{2x^{2}-5x-3}
Expand \left(x-3\right)\left(2x+1\right).