Evaluate
\frac{\sqrt{30}}{60}\approx 0.091287093
Share
Copied to clipboard
\frac{3\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\times \frac{\sqrt{2}}{3\sqrt{40}}
Rationalize the denominator of \frac{3}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{3\sqrt{6}}{6}\times \frac{\sqrt{2}}{3\sqrt{40}}
The square of \sqrt{6} is 6.
\frac{1}{2}\sqrt{6}\times \frac{\sqrt{2}}{3\sqrt{40}}
Divide 3\sqrt{6} by 6 to get \frac{1}{2}\sqrt{6}.
\frac{1}{2}\sqrt{6}\times \frac{\sqrt{2}}{3\times 2\sqrt{10}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{1}{2}\sqrt{6}\times \frac{\sqrt{2}}{6\sqrt{10}}
Multiply 3 and 2 to get 6.
\frac{1}{2}\sqrt{6}\times \frac{\sqrt{2}\sqrt{10}}{6\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{6\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{1}{2}\sqrt{6}\times \frac{\sqrt{2}\sqrt{10}}{6\times 10}
The square of \sqrt{10} is 10.
\frac{1}{2}\sqrt{6}\times \frac{\sqrt{2}\sqrt{2}\sqrt{5}}{6\times 10}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{1}{2}\sqrt{6}\times \frac{2\sqrt{5}}{6\times 10}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{1}{2}\sqrt{6}\times \frac{2\sqrt{5}}{60}
Multiply 6 and 10 to get 60.
\frac{1}{2}\sqrt{6}\times \frac{1}{30}\sqrt{5}
Divide 2\sqrt{5} by 60 to get \frac{1}{30}\sqrt{5}.
\frac{1\times 1}{2\times 30}\sqrt{6}\sqrt{5}
Multiply \frac{1}{2} times \frac{1}{30} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{60}\sqrt{6}\sqrt{5}
Do the multiplications in the fraction \frac{1\times 1}{2\times 30}.
\frac{1}{60}\sqrt{30}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}