Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\frac{5}{\sqrt{7}+\sqrt{2}}-\frac{2}{\sqrt{7}-\sqrt{5}}
Rationalize the denominator of \frac{3}{\sqrt{5}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{2}.
\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{5}{\sqrt{7}+\sqrt{2}}-\frac{2}{\sqrt{7}-\sqrt{5}}
Consider \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\frac{5}{\sqrt{7}+\sqrt{2}}-\frac{2}{\sqrt{7}-\sqrt{5}}
Square \sqrt{5}. Square \sqrt{2}.
\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\frac{5}{\sqrt{7}+\sqrt{2}}-\frac{2}{\sqrt{7}-\sqrt{5}}
Subtract 2 from 5 to get 3.
\sqrt{5}+\sqrt{2}+\frac{5}{\sqrt{7}+\sqrt{2}}-\frac{2}{\sqrt{7}-\sqrt{5}}
Cancel out 3 and 3.
\sqrt{5}+\sqrt{2}+\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)}-\frac{2}{\sqrt{7}-\sqrt{5}}
Rationalize the denominator of \frac{5}{\sqrt{7}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{2}.
\sqrt{5}+\sqrt{2}+\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\frac{2}{\sqrt{7}-\sqrt{5}}
Consider \left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{5}+\sqrt{2}+\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{7-2}-\frac{2}{\sqrt{7}-\sqrt{5}}
Square \sqrt{7}. Square \sqrt{2}.
\sqrt{5}+\sqrt{2}+\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{5}-\frac{2}{\sqrt{7}-\sqrt{5}}
Subtract 2 from 7 to get 5.
\sqrt{5}+\sqrt{2}+\sqrt{7}-\sqrt{2}-\frac{2}{\sqrt{7}-\sqrt{5}}
Cancel out 5 and 5.
\sqrt{5}+\sqrt{7}-\frac{2}{\sqrt{7}-\sqrt{5}}
Combine \sqrt{2} and -\sqrt{2} to get 0.
\sqrt{5}+\sqrt{7}-\frac{2\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{\sqrt{7}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{5}.
\sqrt{5}+\sqrt{7}-\frac{2\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{5}+\sqrt{7}-\frac{2\left(\sqrt{7}+\sqrt{5}\right)}{7-5}
Square \sqrt{7}. Square \sqrt{5}.
\sqrt{5}+\sqrt{7}-\frac{2\left(\sqrt{7}+\sqrt{5}\right)}{2}
Subtract 5 from 7 to get 2.
\sqrt{5}+\sqrt{7}-\left(\sqrt{7}+\sqrt{5}\right)
Cancel out 2 and 2.
\sqrt{5}+\sqrt{7}-\sqrt{7}-\sqrt{5}
To find the opposite of \sqrt{7}+\sqrt{5}, find the opposite of each term.
\sqrt{5}-\sqrt{5}
Combine \sqrt{7} and -\sqrt{7} to get 0.
0
Combine \sqrt{5} and -\sqrt{5} to get 0.