Evaluate
-\frac{\sqrt{2}}{7}+3\sqrt{5}-\frac{46}{7}\approx -0.065255148
Share
Copied to clipboard
\frac{3\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Rationalize the denominator of \frac{3}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\frac{3\left(\sqrt{5}-2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{5}-2\right)}{5-4}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Square \sqrt{5}. Square 2.
\frac{3\left(\sqrt{5}-2\right)}{1}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Subtract 4 from 5 to get 1.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}}{2\sqrt{2}-1}
Anything divided by one gives itself.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)}
Rationalize the denominator of \frac{\sqrt{2}}{2\sqrt{2}-1} by multiplying numerator and denominator by 2\sqrt{2}+1.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}
Consider \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{4\times 2-1^{2}}
The square of \sqrt{2} is 2.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{8-1^{2}}
Multiply 4 and 2 to get 8.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{8-1}
Calculate 1 to the power of 2 and get 1.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{7}
Subtract 1 from 8 to get 7.
3\sqrt{5}-6-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{7}
Use the distributive property to multiply 3 by \sqrt{5}-2.
3\sqrt{5}-6-\frac{2\left(\sqrt{2}\right)^{2}+\sqrt{2}}{7}
Use the distributive property to multiply \sqrt{2} by 2\sqrt{2}+1.
3\sqrt{5}-6-\frac{2\times 2+\sqrt{2}}{7}
The square of \sqrt{2} is 2.
3\sqrt{5}-6-\frac{4+\sqrt{2}}{7}
Multiply 2 and 2 to get 4.
\frac{7\left(3\sqrt{5}-6\right)}{7}-\frac{4+\sqrt{2}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{5}-6 times \frac{7}{7}.
\frac{7\left(3\sqrt{5}-6\right)-\left(4+\sqrt{2}\right)}{7}
Since \frac{7\left(3\sqrt{5}-6\right)}{7} and \frac{4+\sqrt{2}}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{21\sqrt{5}-42-4-\sqrt{2}}{7}
Do the multiplications in 7\left(3\sqrt{5}-6\right)-\left(4+\sqrt{2}\right).
\frac{21\sqrt{5}-46-\sqrt{2}}{7}
Do the calculations in 21\sqrt{5}-42-4-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}