Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Rationalize the denominator of \frac{3}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\frac{3\left(\sqrt{5}-2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{5}-2\right)}{5-4}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Square \sqrt{5}. Square 2.
\frac{3\left(\sqrt{5}-2\right)}{1}-\frac{\sqrt{2}}{2\sqrt{2}-1}
Subtract 4 from 5 to get 1.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}}{2\sqrt{2}-1}
Anything divided by one gives itself.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)}
Rationalize the denominator of \frac{\sqrt{2}}{2\sqrt{2}-1} by multiplying numerator and denominator by 2\sqrt{2}+1.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}
Consider \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{4\times 2-1^{2}}
The square of \sqrt{2} is 2.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{8-1^{2}}
Multiply 4 and 2 to get 8.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{8-1}
Calculate 1 to the power of 2 and get 1.
3\left(\sqrt{5}-2\right)-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{7}
Subtract 1 from 8 to get 7.
3\sqrt{5}-6-\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{7}
Use the distributive property to multiply 3 by \sqrt{5}-2.
3\sqrt{5}-6-\frac{2\left(\sqrt{2}\right)^{2}+\sqrt{2}}{7}
Use the distributive property to multiply \sqrt{2} by 2\sqrt{2}+1.
3\sqrt{5}-6-\frac{2\times 2+\sqrt{2}}{7}
The square of \sqrt{2} is 2.
3\sqrt{5}-6-\frac{4+\sqrt{2}}{7}
Multiply 2 and 2 to get 4.
\frac{7\left(3\sqrt{5}-6\right)}{7}-\frac{4+\sqrt{2}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{5}-6 times \frac{7}{7}.
\frac{7\left(3\sqrt{5}-6\right)-\left(4+\sqrt{2}\right)}{7}
Since \frac{7\left(3\sqrt{5}-6\right)}{7} and \frac{4+\sqrt{2}}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{21\sqrt{5}-42-4-\sqrt{2}}{7}
Do the multiplications in 7\left(3\sqrt{5}-6\right)-\left(4+\sqrt{2}\right).
\frac{21\sqrt{5}-46-\sqrt{2}}{7}
Do the calculations in 21\sqrt{5}-42-4-\sqrt{2}.