Solve for a
a=\frac{\sqrt{6}b}{3}+\sqrt{6}+3
Solve for b
b=\frac{\sqrt{6}\left(a-3\right)-6}{2}
Share
Copied to clipboard
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=a\sqrt{3}-b\sqrt{2}
Rationalize the denominator of \frac{3}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}=a\sqrt{3}-b\sqrt{2}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{3-2}=a\sqrt{3}-b\sqrt{2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{1}=a\sqrt{3}-b\sqrt{2}
Subtract 2 from 3 to get 1.
3\left(\sqrt{3}+\sqrt{2}\right)=a\sqrt{3}-b\sqrt{2}
Anything divided by one gives itself.
3\sqrt{3}+3\sqrt{2}=a\sqrt{3}-b\sqrt{2}
Use the distributive property to multiply 3 by \sqrt{3}+\sqrt{2}.
a\sqrt{3}-b\sqrt{2}=3\sqrt{3}+3\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
a\sqrt{3}=3\sqrt{3}+3\sqrt{2}+b\sqrt{2}
Add b\sqrt{2} to both sides.
\sqrt{3}a=\sqrt{2}b+3\sqrt{2}+3\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}a}{\sqrt{3}}=\frac{\sqrt{2}b+3\sqrt{2}+3\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
a=\frac{\sqrt{2}b+3\sqrt{2}+3\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
a=\frac{\sqrt{3}\left(\sqrt{2}b+3\sqrt{2}+3\sqrt{3}\right)}{3}
Divide 3\sqrt{3}+3\sqrt{2}+b\sqrt{2} by \sqrt{3}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=a\sqrt{3}-b\sqrt{2}
Rationalize the denominator of \frac{3}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}=a\sqrt{3}-b\sqrt{2}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{3-2}=a\sqrt{3}-b\sqrt{2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{3\left(\sqrt{3}+\sqrt{2}\right)}{1}=a\sqrt{3}-b\sqrt{2}
Subtract 2 from 3 to get 1.
3\left(\sqrt{3}+\sqrt{2}\right)=a\sqrt{3}-b\sqrt{2}
Anything divided by one gives itself.
3\sqrt{3}+3\sqrt{2}=a\sqrt{3}-b\sqrt{2}
Use the distributive property to multiply 3 by \sqrt{3}+\sqrt{2}.
a\sqrt{3}-b\sqrt{2}=3\sqrt{3}+3\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
-b\sqrt{2}=3\sqrt{3}+3\sqrt{2}-a\sqrt{3}
Subtract a\sqrt{3} from both sides.
\left(-\sqrt{2}\right)b=-\sqrt{3}a+3\sqrt{2}+3\sqrt{3}
The equation is in standard form.
\frac{\left(-\sqrt{2}\right)b}{-\sqrt{2}}=\frac{\sqrt{3}\left(-a+\sqrt{6}+3\right)}{-\sqrt{2}}
Divide both sides by -\sqrt{2}.
b=\frac{\sqrt{3}\left(-a+\sqrt{6}+3\right)}{-\sqrt{2}}
Dividing by -\sqrt{2} undoes the multiplication by -\sqrt{2}.
b=-\frac{\sqrt{6}\left(-a+\sqrt{6}+3\right)}{2}
Divide \left(3+\sqrt{6}-a\right)\sqrt{3} by -\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}