Evaluate
9
Factor
3^{2}
Quiz
Arithmetic
\frac { 3 } { \sqrt { 2 } - 1 } - \frac { \sqrt { 2 } \cdot ( 6 - 3 \sqrt { 8 } ) } { 2 }
Share
Copied to clipboard
\frac{3\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{2}\left(6-3\sqrt{8}\right)}{2}
Rationalize the denominator of \frac{3}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{3\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{2}\left(6-3\sqrt{8}\right)}{2}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{2}\left(6-3\sqrt{8}\right)}{2}
Square \sqrt{2}. Square 1.
\frac{3\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{2}\left(6-3\sqrt{8}\right)}{2}
Subtract 1 from 2 to get 1.
3\left(\sqrt{2}+1\right)-\frac{\sqrt{2}\left(6-3\sqrt{8}\right)}{2}
Anything divided by one gives itself.
3\left(\sqrt{2}+1\right)-\frac{\sqrt{2}\left(6-3\times 2\sqrt{2}\right)}{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\left(\sqrt{2}+1\right)-\frac{\sqrt{2}\left(6-6\sqrt{2}\right)}{2}
Multiply -3 and 2 to get -6.
3\sqrt{2}+3-\frac{\sqrt{2}\left(6-6\sqrt{2}\right)}{2}
Use the distributive property to multiply 3 by \sqrt{2}+1.
3\sqrt{2}+3-\frac{6\sqrt{2}-6\left(\sqrt{2}\right)^{2}}{2}
Use the distributive property to multiply \sqrt{2} by 6-6\sqrt{2}.
3\sqrt{2}+3-\frac{6\sqrt{2}-6\times 2}{2}
The square of \sqrt{2} is 2.
3\sqrt{2}+3-\frac{6\sqrt{2}-12}{2}
Multiply -6 and 2 to get -12.
\frac{2\left(3\sqrt{2}+3\right)}{2}-\frac{6\sqrt{2}-12}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{2}+3 times \frac{2}{2}.
\frac{2\left(3\sqrt{2}+3\right)-\left(6\sqrt{2}-12\right)}{2}
Since \frac{2\left(3\sqrt{2}+3\right)}{2} and \frac{6\sqrt{2}-12}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{2}+6-6\sqrt{2}+12}{2}
Do the multiplications in 2\left(3\sqrt{2}+3\right)-\left(6\sqrt{2}-12\right).
\frac{18}{2}
Do the calculations in 6\sqrt{2}+6-6\sqrt{2}+12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}