Solve for x
x=\frac{\sqrt{2}\left(2y+1\right)}{3}
Solve for y
y=\frac{3\sqrt{2}x}{4}-\frac{1}{2}
Graph
Share
Copied to clipboard
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}x-2y=1
Rationalize the denominator of \frac{3}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{2}x-2y=1
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}x}{2}-2y=1
Express \frac{3\sqrt{2}}{2}x as a single fraction.
\frac{3\sqrt{2}x}{2}=1+2y
Add 2y to both sides.
3\sqrt{2}x=2+4y
Multiply both sides of the equation by 2.
3\sqrt{2}x=4y+2
The equation is in standard form.
\frac{3\sqrt{2}x}{3\sqrt{2}}=\frac{4y+2}{3\sqrt{2}}
Divide both sides by 3\sqrt{2}.
x=\frac{4y+2}{3\sqrt{2}}
Dividing by 3\sqrt{2} undoes the multiplication by 3\sqrt{2}.
x=\frac{\sqrt{2}\left(2y+1\right)}{3}
Divide 2+4y by 3\sqrt{2}.
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}x-2y=1
Rationalize the denominator of \frac{3}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{2}x-2y=1
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}x}{2}-2y=1
Express \frac{3\sqrt{2}}{2}x as a single fraction.
-2y=1-\frac{3\sqrt{2}x}{2}
Subtract \frac{3\sqrt{2}x}{2} from both sides.
-4y=2-3\sqrt{2}x
Multiply both sides of the equation by 2.
-4y=-3\sqrt{2}x+2
The equation is in standard form.
\frac{-4y}{-4}=\frac{-3\sqrt{2}x+2}{-4}
Divide both sides by -4.
y=\frac{-3\sqrt{2}x+2}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{3\sqrt{2}x}{4}-\frac{1}{2}
Divide 2-3\sqrt{2}x by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}