Solve for x
x=-\frac{7\lambda ^{2}-56\lambda +72}{48-7\lambda }
\lambda \neq 4\text{ and }\lambda \neq 6\text{ and }\lambda \neq \frac{48}{7}
Solve for λ (complex solution)
\lambda =\frac{\sqrt{49x^{2}-560x+1120}}{14}+\frac{x}{2}+4
\lambda =-\frac{\sqrt{49x^{2}-560x+1120}}{14}+\frac{x}{2}+4\text{, }x\neq 2
Solve for λ
\lambda =\frac{\sqrt{49x^{2}-560x+1120}}{14}+\frac{x}{2}+4
\lambda =-\frac{\sqrt{49x^{2}-560x+1120}}{14}+\frac{x}{2}+4\text{, }\left(x\neq 2\text{ and }x\leq \frac{40-4\sqrt{30}}{7}\right)\text{ or }x\geq \frac{4\sqrt{30}+40}{7}
Graph
Share
Copied to clipboard
\left(x-2\right)\left(\lambda -4\right)\times 3+\left(\lambda -6\right)\left(\lambda -4\right)\times 7=\left(x-2\right)\left(\lambda -6\right)\times 10
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(\lambda -6\right)\left(\lambda -4\right), the least common multiple of \lambda -6,x-2,\lambda -4.
\left(x\lambda -4x-2\lambda +8\right)\times 3+\left(\lambda -6\right)\left(\lambda -4\right)\times 7=\left(x-2\right)\left(\lambda -6\right)\times 10
Use the distributive property to multiply x-2 by \lambda -4.
3x\lambda -12x-6\lambda +24+\left(\lambda -6\right)\left(\lambda -4\right)\times 7=\left(x-2\right)\left(\lambda -6\right)\times 10
Use the distributive property to multiply x\lambda -4x-2\lambda +8 by 3.
3x\lambda -12x-6\lambda +24+\left(\lambda ^{2}-10\lambda +24\right)\times 7=\left(x-2\right)\left(\lambda -6\right)\times 10
Use the distributive property to multiply \lambda -6 by \lambda -4 and combine like terms.
3x\lambda -12x-6\lambda +24+7\lambda ^{2}-70\lambda +168=\left(x-2\right)\left(\lambda -6\right)\times 10
Use the distributive property to multiply \lambda ^{2}-10\lambda +24 by 7.
3x\lambda -12x-76\lambda +24+7\lambda ^{2}+168=\left(x-2\right)\left(\lambda -6\right)\times 10
Combine -6\lambda and -70\lambda to get -76\lambda .
3x\lambda -12x-76\lambda +192+7\lambda ^{2}=\left(x-2\right)\left(\lambda -6\right)\times 10
Add 24 and 168 to get 192.
3x\lambda -12x-76\lambda +192+7\lambda ^{2}=\left(x\lambda -6x-2\lambda +12\right)\times 10
Use the distributive property to multiply x-2 by \lambda -6.
3x\lambda -12x-76\lambda +192+7\lambda ^{2}=10x\lambda -60x-20\lambda +120
Use the distributive property to multiply x\lambda -6x-2\lambda +12 by 10.
3x\lambda -12x-76\lambda +192+7\lambda ^{2}-10x\lambda =-60x-20\lambda +120
Subtract 10x\lambda from both sides.
-7x\lambda -12x-76\lambda +192+7\lambda ^{2}=-60x-20\lambda +120
Combine 3x\lambda and -10x\lambda to get -7x\lambda .
-7x\lambda -12x-76\lambda +192+7\lambda ^{2}+60x=-20\lambda +120
Add 60x to both sides.
-7x\lambda +48x-76\lambda +192+7\lambda ^{2}=-20\lambda +120
Combine -12x and 60x to get 48x.
-7x\lambda +48x+192+7\lambda ^{2}=-20\lambda +120+76\lambda
Add 76\lambda to both sides.
-7x\lambda +48x+192+7\lambda ^{2}=56\lambda +120
Combine -20\lambda and 76\lambda to get 56\lambda .
-7x\lambda +48x+7\lambda ^{2}=56\lambda +120-192
Subtract 192 from both sides.
-7x\lambda +48x+7\lambda ^{2}=56\lambda -72
Subtract 192 from 120 to get -72.
-7x\lambda +48x=56\lambda -72-7\lambda ^{2}
Subtract 7\lambda ^{2} from both sides.
\left(-7\lambda +48\right)x=56\lambda -72-7\lambda ^{2}
Combine all terms containing x.
\left(48-7\lambda \right)x=-7\lambda ^{2}+56\lambda -72
The equation is in standard form.
\frac{\left(48-7\lambda \right)x}{48-7\lambda }=\frac{-7\lambda ^{2}+56\lambda -72}{48-7\lambda }
Divide both sides by -7\lambda +48.
x=\frac{-7\lambda ^{2}+56\lambda -72}{48-7\lambda }
Dividing by -7\lambda +48 undoes the multiplication by -7\lambda +48.
x=\frac{-7\lambda ^{2}+56\lambda -72}{48-7\lambda }\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}