Evaluate
\frac{21}{5}=4.2
Factor
\frac{3 \cdot 7}{5} = 4\frac{1}{5} = 4.2
Share
Copied to clipboard
3\times \frac{2}{5}-\frac{\frac{7}{5}-2}{1-\frac{4}{5}}
Divide 3 by \frac{5}{2} by multiplying 3 by the reciprocal of \frac{5}{2}.
\frac{3\times 2}{5}-\frac{\frac{7}{5}-2}{1-\frac{4}{5}}
Express 3\times \frac{2}{5} as a single fraction.
\frac{6}{5}-\frac{\frac{7}{5}-2}{1-\frac{4}{5}}
Multiply 3 and 2 to get 6.
\frac{6}{5}-\frac{\frac{7}{5}-\frac{10}{5}}{1-\frac{4}{5}}
Convert 2 to fraction \frac{10}{5}.
\frac{6}{5}-\frac{\frac{7-10}{5}}{1-\frac{4}{5}}
Since \frac{7}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{6}{5}-\frac{-\frac{3}{5}}{1-\frac{4}{5}}
Subtract 10 from 7 to get -3.
\frac{6}{5}-\frac{-\frac{3}{5}}{\frac{5}{5}-\frac{4}{5}}
Convert 1 to fraction \frac{5}{5}.
\frac{6}{5}-\frac{-\frac{3}{5}}{\frac{5-4}{5}}
Since \frac{5}{5} and \frac{4}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{6}{5}-\frac{-\frac{3}{5}}{\frac{1}{5}}
Subtract 4 from 5 to get 1.
\frac{6}{5}-\left(-\frac{3}{5}\times 5\right)
Divide -\frac{3}{5} by \frac{1}{5} by multiplying -\frac{3}{5} by the reciprocal of \frac{1}{5}.
\frac{6}{5}-\left(-3\right)
Cancel out 5 and 5.
\frac{6}{5}+3
The opposite of -3 is 3.
\frac{6}{5}+\frac{15}{5}
Convert 3 to fraction \frac{15}{5}.
\frac{6+15}{5}
Since \frac{6}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
\frac{21}{5}
Add 6 and 15 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}