Solve for x
x = \frac{45}{2} = 22\frac{1}{2} = 22.5
Graph
Share
Copied to clipboard
\frac{3\times 5}{100}=\frac{2}{\frac{300}{x}}
Divide 3 by \frac{100}{5} by multiplying 3 by the reciprocal of \frac{100}{5}.
\frac{15}{100}=\frac{2}{\frac{300}{x}}
Multiply 3 and 5 to get 15.
\frac{3}{20}=\frac{2}{\frac{300}{x}}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{3}{20}=\frac{2x}{300}
Variable x cannot be equal to 0 since division by zero is not defined. Divide 2 by \frac{300}{x} by multiplying 2 by the reciprocal of \frac{300}{x}.
\frac{3}{20}=\frac{1}{150}x
Divide 2x by 300 to get \frac{1}{150}x.
\frac{1}{150}x=\frac{3}{20}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3}{20}\times 150
Multiply both sides by 150, the reciprocal of \frac{1}{150}.
x=\frac{45}{2}
Multiply \frac{3}{20} and 150 to get \frac{45}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}