Solve for x
x = \frac{551}{6} = 91\frac{5}{6} \approx 91.833333333
Graph
Share
Copied to clipboard
3\times 56+4\times 16=x\times \frac{3\times 56}{66.5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
168+64=x\times \frac{3\times 56}{66.5}
Multiply 3 and 56 to get 168. Multiply 4 and 16 to get 64.
232=x\times \frac{3\times 56}{66.5}
Add 168 and 64 to get 232.
232=x\times \frac{168}{66.5}
Multiply 3 and 56 to get 168.
232=x\times \frac{1680}{665}
Expand \frac{168}{66.5} by multiplying both numerator and the denominator by 10.
232=x\times \frac{48}{19}
Reduce the fraction \frac{1680}{665} to lowest terms by extracting and canceling out 35.
x\times \frac{48}{19}=232
Swap sides so that all variable terms are on the left hand side.
x=232\times \frac{19}{48}
Multiply both sides by \frac{19}{48}, the reciprocal of \frac{48}{19}.
x=\frac{232\times 19}{48}
Express 232\times \frac{19}{48} as a single fraction.
x=\frac{4408}{48}
Multiply 232 and 19 to get 4408.
x=\frac{551}{6}
Reduce the fraction \frac{4408}{48} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}