Evaluate
\frac{3}{1000000040000000}\approx 2.99999988 \cdot 10^{-15}
Factor
\frac{3}{2 ^ {9} \cdot 5 ^ {7} \cdot 13 ^ {2} \cdot 29 \cdot 5101} = 2.9999998800000047 \times 10^{-15}
Share
Copied to clipboard
\frac{3\times \frac{1}{1000000000000}}{10^{3}+4\times 10^{-5}}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
\frac{\frac{3}{1000000000000}}{10^{3}+4\times 10^{-5}}
Multiply 3 and \frac{1}{1000000000000} to get \frac{3}{1000000000000}.
\frac{\frac{3}{1000000000000}}{1000+4\times 10^{-5}}
Calculate 10 to the power of 3 and get 1000.
\frac{\frac{3}{1000000000000}}{1000+4\times \frac{1}{100000}}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{\frac{3}{1000000000000}}{1000+\frac{1}{25000}}
Multiply 4 and \frac{1}{100000} to get \frac{1}{25000}.
\frac{\frac{3}{1000000000000}}{\frac{25000001}{25000}}
Add 1000 and \frac{1}{25000} to get \frac{25000001}{25000}.
\frac{3}{1000000000000}\times \frac{25000}{25000001}
Divide \frac{3}{1000000000000} by \frac{25000001}{25000} by multiplying \frac{3}{1000000000000} by the reciprocal of \frac{25000001}{25000}.
\frac{3}{1000000040000000}
Multiply \frac{3}{1000000000000} and \frac{25000}{25000001} to get \frac{3}{1000000040000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}