Evaluate
6
Share
Copied to clipboard
\frac{3\sqrt{3}-2\cos(30)}{\tan(30)}
Get the value of \tan(60) from trigonometric values table.
\frac{3\sqrt{3}-2\times \frac{\sqrt{3}}{2}}{\tan(30)}
Get the value of \cos(30) from trigonometric values table.
\frac{3\sqrt{3}-\sqrt{3}}{\tan(30)}
Cancel out 2 and 2.
\frac{2\sqrt{3}}{\tan(30)}
Combine 3\sqrt{3} and -\sqrt{3} to get 2\sqrt{3}.
\frac{2\sqrt{3}}{\frac{\sqrt{3}}{3}}
Get the value of \tan(30) from trigonometric values table.
\frac{2\sqrt{3}\times 3}{\sqrt{3}}
Divide 2\sqrt{3} by \frac{\sqrt{3}}{3} by multiplying 2\sqrt{3} by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{2\sqrt{3}\times 3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}\times 3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}\times 3\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}\sqrt{3}}{3}
Multiply 2 and 3 to get 6.
\frac{6\times 3}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{18}{3}
Multiply 6 and 3 to get 18.
6
Divide 18 by 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}