Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{3\left(\sqrt{2}-1\right)}{1-\left(\tan(\frac{\pi }{8})\right)^{2}}
Get the value of \tan(\frac{\pi }{8}) from trigonometric values table.
\frac{3\left(\sqrt{2}-1\right)}{1-\left(\sqrt{2}-1\right)^{2}}
Get the value of \tan(\frac{\pi }{8}) from trigonometric values table.
\frac{3\left(\sqrt{2}-1\right)}{1-\left(\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
\frac{3\left(\sqrt{2}-1\right)}{1-\left(2-2\sqrt{2}+1\right)}
The square of \sqrt{2} is 2.
\frac{3\left(\sqrt{2}-1\right)}{1-\left(3-2\sqrt{2}\right)}
Add 2 and 1 to get 3.
\frac{3\left(\sqrt{2}-1\right)}{1-3+2\sqrt{2}}
To find the opposite of 3-2\sqrt{2}, find the opposite of each term.
\frac{3\left(\sqrt{2}-1\right)}{-2+2\sqrt{2}}
Subtract 3 from 1 to get -2.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{\left(-2+2\sqrt{2}\right)\left(-2-2\sqrt{2}\right)}
Rationalize the denominator of \frac{3\left(\sqrt{2}-1\right)}{-2+2\sqrt{2}} by multiplying numerator and denominator by -2-2\sqrt{2}.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{\left(-2\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(-2+2\sqrt{2}\right)\left(-2-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{4-\left(2\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{4-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{4-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{4-4\times 2}
The square of \sqrt{2} is 2.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{4-8}
Multiply 4 and 2 to get 8.
\frac{3\left(\sqrt{2}-1\right)\left(-2-2\sqrt{2}\right)}{-4}
Subtract 8 from 4 to get -4.
\frac{\left(3\sqrt{2}-3\right)\left(-2-2\sqrt{2}\right)}{-4}
Use the distributive property to multiply 3 by \sqrt{2}-1.
\frac{-6\left(\sqrt{2}\right)^{2}+6}{-4}
Use the distributive property to multiply 3\sqrt{2}-3 by -2-2\sqrt{2} and combine like terms.
\frac{-6\times 2+6}{-4}
The square of \sqrt{2} is 2.
\frac{-12+6}{-4}
Multiply -6 and 2 to get -12.
\frac{-6}{-4}
Add -12 and 6 to get -6.
\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}