Solve for x
x=1
Graph
Share
Copied to clipboard
\frac{3\sqrt{x}-5}{2}+2=\sqrt{x}
Subtract -2 from both sides of the equation.
3\sqrt{x}-5+4=2\sqrt{x}
Multiply both sides of the equation by 2.
3\sqrt{x}-1=2\sqrt{x}
Add -5 and 4 to get -1.
\left(3\sqrt{x}-1\right)^{2}=\left(2\sqrt{x}\right)^{2}
Square both sides of the equation.
9\left(\sqrt{x}\right)^{2}-6\sqrt{x}+1=\left(2\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{x}-1\right)^{2}.
9x-6\sqrt{x}+1=\left(2\sqrt{x}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x-6\sqrt{x}+1=2^{2}\left(\sqrt{x}\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
9x-6\sqrt{x}+1=4\left(\sqrt{x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
9x-6\sqrt{x}+1=4x
Calculate \sqrt{x} to the power of 2 and get x.
-6\sqrt{x}=4x-\left(9x+1\right)
Subtract 9x+1 from both sides of the equation.
-6\sqrt{x}=4x-9x-1
To find the opposite of 9x+1, find the opposite of each term.
-6\sqrt{x}=-5x-1
Combine 4x and -9x to get -5x.
\left(-6\sqrt{x}\right)^{2}=\left(-5x-1\right)^{2}
Square both sides of the equation.
\left(-6\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-5x-1\right)^{2}
Expand \left(-6\sqrt{x}\right)^{2}.
36\left(\sqrt{x}\right)^{2}=\left(-5x-1\right)^{2}
Calculate -6 to the power of 2 and get 36.
36x=\left(-5x-1\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
36x=25x^{2}+10x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-5x-1\right)^{2}.
36x-25x^{2}=10x+1
Subtract 25x^{2} from both sides.
36x-25x^{2}-10x=1
Subtract 10x from both sides.
26x-25x^{2}=1
Combine 36x and -10x to get 26x.
26x-25x^{2}-1=0
Subtract 1 from both sides.
-25x^{2}+26x-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=26 ab=-25\left(-1\right)=25
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -25x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,25 5,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 25.
1+25=26 5+5=10
Calculate the sum for each pair.
a=25 b=1
The solution is the pair that gives sum 26.
\left(-25x^{2}+25x\right)+\left(x-1\right)
Rewrite -25x^{2}+26x-1 as \left(-25x^{2}+25x\right)+\left(x-1\right).
25x\left(-x+1\right)-\left(-x+1\right)
Factor out 25x in the first and -1 in the second group.
\left(-x+1\right)\left(25x-1\right)
Factor out common term -x+1 by using distributive property.
x=1 x=\frac{1}{25}
To find equation solutions, solve -x+1=0 and 25x-1=0.
\frac{3\sqrt{1}-5}{2}=\sqrt{1}-2
Substitute 1 for x in the equation \frac{3\sqrt{x}-5}{2}=\sqrt{x}-2.
-1=-1
Simplify. The value x=1 satisfies the equation.
\frac{3\sqrt{\frac{1}{25}}-5}{2}=\sqrt{\frac{1}{25}}-2
Substitute \frac{1}{25} for x in the equation \frac{3\sqrt{x}-5}{2}=\sqrt{x}-2.
-\frac{11}{5}=-\frac{9}{5}
Simplify. The value x=\frac{1}{25} does not satisfy the equation.
\frac{3\sqrt{1}-5}{2}=\sqrt{1}-2
Substitute 1 for x in the equation \frac{3\sqrt{x}-5}{2}=\sqrt{x}-2.
-1=-1
Simplify. The value x=1 satisfies the equation.
x=1
Equation 3\sqrt{x}-1=2\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}