Evaluate
\frac{41\sqrt{2}}{4}-\frac{99}{8}\approx 2.120689014
Factor
\frac{82 \sqrt{2} - 99}{8} = 2.120689014324226
Share
Copied to clipboard
\frac{3\times 7\sqrt{2}}{4}-\frac{11\sqrt{81}}{8}+\frac{5\sqrt{72}}{6}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
\frac{21\sqrt{2}}{4}-\frac{11\sqrt{81}}{8}+\frac{5\sqrt{72}}{6}
Multiply 3 and 7 to get 21.
\frac{21\sqrt{2}}{4}-\frac{11\times 9}{8}+\frac{5\sqrt{72}}{6}
Calculate the square root of 81 and get 9.
\frac{21\sqrt{2}}{4}-\frac{99}{8}+\frac{5\sqrt{72}}{6}
Multiply 11 and 9 to get 99.
\frac{21\sqrt{2}}{4}-\frac{99}{8}+\frac{5\times 6\sqrt{2}}{6}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{21\sqrt{2}}{4}-\frac{99}{8}+\frac{30\sqrt{2}}{6}
Multiply 5 and 6 to get 30.
\frac{21\sqrt{2}}{4}-\frac{99}{8}+5\sqrt{2}
Divide 30\sqrt{2} by 6 to get 5\sqrt{2}.
\frac{41}{4}\sqrt{2}-\frac{99}{8}
Combine \frac{21\sqrt{2}}{4} and 5\sqrt{2} to get \frac{41}{4}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}