Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{\left(6-3\sqrt{3}\right)\left(6+3\sqrt{3}\right)}
Rationalize the denominator of \frac{3\sqrt{6}}{6-3\sqrt{3}} by multiplying numerator and denominator by 6+3\sqrt{3}.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{6^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(6-3\sqrt{3}\right)\left(6+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{36-\left(-3\sqrt{3}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{36-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{36-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{36-9\times 3}
The square of \sqrt{3} is 3.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{36-27}
Multiply 9 and 3 to get 27.
\frac{3\sqrt{6}\left(6+3\sqrt{3}\right)}{9}
Subtract 27 from 36 to get 9.
\frac{1}{3}\sqrt{6}\left(6+3\sqrt{3}\right)
Divide 3\sqrt{6}\left(6+3\sqrt{3}\right) by 9 to get \frac{1}{3}\sqrt{6}\left(6+3\sqrt{3}\right).
\frac{1}{3}\sqrt{6}\times 6+\frac{1}{3}\sqrt{6}\times 3\sqrt{3}
Use the distributive property to multiply \frac{1}{3}\sqrt{6} by 6+3\sqrt{3}.
\frac{6}{3}\sqrt{6}+\frac{1}{3}\sqrt{6}\times 3\sqrt{3}
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
2\sqrt{6}+\frac{1}{3}\sqrt{6}\times 3\sqrt{3}
Divide 6 by 3 to get 2.
2\sqrt{6}+\frac{1}{3}\sqrt{3}\sqrt{2}\times 3\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{6}+\frac{1}{3}\times 3\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{6}+3\sqrt{2}
Cancel out 3 and 3.