Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{5}-2\right)\left(3\sqrt{5}-2\right)}{\left(3\sqrt{5}+2\right)\left(3\sqrt{5}-2\right)}
Rationalize the denominator of \frac{3\sqrt{5}-2}{3\sqrt{5}+2} by multiplying numerator and denominator by 3\sqrt{5}-2.
\frac{\left(3\sqrt{5}-2\right)\left(3\sqrt{5}-2\right)}{\left(3\sqrt{5}\right)^{2}-2^{2}}
Consider \left(3\sqrt{5}+2\right)\left(3\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{5}-2\right)^{2}}{\left(3\sqrt{5}\right)^{2}-2^{2}}
Multiply 3\sqrt{5}-2 and 3\sqrt{5}-2 to get \left(3\sqrt{5}-2\right)^{2}.
\frac{9\left(\sqrt{5}\right)^{2}-12\sqrt{5}+4}{\left(3\sqrt{5}\right)^{2}-2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{5}-2\right)^{2}.
\frac{9\times 5-12\sqrt{5}+4}{\left(3\sqrt{5}\right)^{2}-2^{2}}
The square of \sqrt{5} is 5.
\frac{45-12\sqrt{5}+4}{\left(3\sqrt{5}\right)^{2}-2^{2}}
Multiply 9 and 5 to get 45.
\frac{49-12\sqrt{5}}{\left(3\sqrt{5}\right)^{2}-2^{2}}
Add 45 and 4 to get 49.
\frac{49-12\sqrt{5}}{3^{2}\left(\sqrt{5}\right)^{2}-2^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{49-12\sqrt{5}}{9\left(\sqrt{5}\right)^{2}-2^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{49-12\sqrt{5}}{9\times 5-2^{2}}
The square of \sqrt{5} is 5.
\frac{49-12\sqrt{5}}{45-2^{2}}
Multiply 9 and 5 to get 45.
\frac{49-12\sqrt{5}}{45-4}
Calculate 2 to the power of 2 and get 4.
\frac{49-12\sqrt{5}}{41}
Subtract 4 from 45 to get 41.