Evaluate
6\sqrt{35}+9\sqrt{15}-2\sqrt{21}-9\approx 52.188177425
Factor
6 \sqrt{35} + 9 \sqrt{15} - 2 \sqrt{21} - 9 = 52.188177425
Share
Copied to clipboard
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{\left(2\sqrt{7}-3\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}
Rationalize the denominator of \frac{3\sqrt{5}-\sqrt{3}}{2\sqrt{7}-3\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{7}+3\sqrt{3}.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{\left(2\sqrt{7}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(2\sqrt{7}-3\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{2^{2}\left(\sqrt{7}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{4\left(\sqrt{7}\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{4\times 7-\left(-3\sqrt{3}\right)^{2}}
The square of \sqrt{7} is 7.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{28-\left(-3\sqrt{3}\right)^{2}}
Multiply 4 and 7 to get 28.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{28-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{28-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{28-9\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{28-27}
Multiply 9 and 3 to get 27.
\frac{\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)}{1}
Subtract 27 from 28 to get 1.
\left(3\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{7}+3\sqrt{3}\right)
Anything divided by one gives itself.
6\sqrt{5}\sqrt{7}+9\sqrt{3}\sqrt{5}-2\sqrt{3}\sqrt{7}-3\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of 3\sqrt{5}-\sqrt{3} by each term of 2\sqrt{7}+3\sqrt{3}.
6\sqrt{35}+9\sqrt{3}\sqrt{5}-2\sqrt{3}\sqrt{7}-3\left(\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
6\sqrt{35}+9\sqrt{15}-2\sqrt{3}\sqrt{7}-3\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
6\sqrt{35}+9\sqrt{15}-2\sqrt{21}-3\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
6\sqrt{35}+9\sqrt{15}-2\sqrt{21}-3\times 3
The square of \sqrt{3} is 3.
6\sqrt{35}+9\sqrt{15}-2\sqrt{21}-9
Multiply -3 and 3 to get -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}