Evaluate
\frac{30-3\sqrt{5}}{19}\approx 1.225884004
Share
Copied to clipboard
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{\left(1+2\sqrt{5}\right)\left(1-2\sqrt{5}\right)}
Rationalize the denominator of \frac{3\sqrt{5}}{1+2\sqrt{5}} by multiplying numerator and denominator by 1-2\sqrt{5}.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1^{2}-\left(2\sqrt{5}\right)^{2}}
Consider \left(1+2\sqrt{5}\right)\left(1-2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-\left(2\sqrt{5}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-2^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-4\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-4\times 5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-20}
Multiply 4 and 5 to get 20.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{-19}
Subtract 20 from 1 to get -19.
\frac{3\sqrt{5}-6\left(\sqrt{5}\right)^{2}}{-19}
Use the distributive property to multiply 3\sqrt{5} by 1-2\sqrt{5}.
\frac{3\sqrt{5}-6\times 5}{-19}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}-30}{-19}
Multiply -6 and 5 to get -30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}