Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{\left(1+2\sqrt{5}\right)\left(1-2\sqrt{5}\right)}
Rationalize the denominator of \frac{3\sqrt{5}}{1+2\sqrt{5}} by multiplying numerator and denominator by 1-2\sqrt{5}.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1^{2}-\left(2\sqrt{5}\right)^{2}}
Consider \left(1+2\sqrt{5}\right)\left(1-2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-\left(2\sqrt{5}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-2^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-4\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-4\times 5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{1-20}
Multiply 4 and 5 to get 20.
\frac{3\sqrt{5}\left(1-2\sqrt{5}\right)}{-19}
Subtract 20 from 1 to get -19.
\frac{3\sqrt{5}-6\left(\sqrt{5}\right)^{2}}{-19}
Use the distributive property to multiply 3\sqrt{5} by 1-2\sqrt{5}.
\frac{3\sqrt{5}-6\times 5}{-19}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}-30}{-19}
Multiply -6 and 5 to get -30.