Evaluate
\sqrt{2}+3\approx 4.414213562
Share
Copied to clipboard
\frac{3\times 4\sqrt{2}+2\sqrt{16}}{2\sqrt{8}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{12\sqrt{2}+2\sqrt{16}}{2\sqrt{8}}
Multiply 3 and 4 to get 12.
\frac{12\sqrt{2}+2\times 4}{2\sqrt{8}}
Calculate the square root of 16 and get 4.
\frac{12\sqrt{2}+8}{2\sqrt{8}}
Multiply 2 and 4 to get 8.
\frac{12\sqrt{2}+8}{2\times 2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{12\sqrt{2}+8}{4\sqrt{2}}
Multiply 2 and 2 to get 4.
\frac{\left(12\sqrt{2}+8\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{12\sqrt{2}+8}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(12\sqrt{2}+8\right)\sqrt{2}}{4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(12\sqrt{2}+8\right)\sqrt{2}}{8}
Multiply 4 and 2 to get 8.
\frac{12\left(\sqrt{2}\right)^{2}+8\sqrt{2}}{8}
Use the distributive property to multiply 12\sqrt{2}+8 by \sqrt{2}.
\frac{12\times 2+8\sqrt{2}}{8}
The square of \sqrt{2} is 2.
\frac{24+8\sqrt{2}}{8}
Multiply 12 and 2 to get 24.
3+\sqrt{2}
Divide each term of 24+8\sqrt{2} by 8 to get 3+\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}