Solve for x
x=12\sqrt{3}+18\approx 38.784609691
Graph
Share
Copied to clipboard
\left(x+6\right)\times 3\sqrt{3}=x\times 6
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+6\right), the least common multiple of x,6+x.
\left(3x+18\right)\sqrt{3}=x\times 6
Use the distributive property to multiply x+6 by 3.
3x\sqrt{3}+18\sqrt{3}=x\times 6
Use the distributive property to multiply 3x+18 by \sqrt{3}.
3x\sqrt{3}+18\sqrt{3}-x\times 6=0
Subtract x\times 6 from both sides.
3x\sqrt{3}+18\sqrt{3}-6x=0
Multiply -1 and 6 to get -6.
3x\sqrt{3}-6x=-18\sqrt{3}
Subtract 18\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
\left(3\sqrt{3}-6\right)x=-18\sqrt{3}
Combine all terms containing x.
\frac{\left(3\sqrt{3}-6\right)x}{3\sqrt{3}-6}=-\frac{18\sqrt{3}}{3\sqrt{3}-6}
Divide both sides by 3\sqrt{3}-6.
x=-\frac{18\sqrt{3}}{3\sqrt{3}-6}
Dividing by 3\sqrt{3}-6 undoes the multiplication by 3\sqrt{3}-6.
x=12\sqrt{3}+18
Divide -18\sqrt{3} by 3\sqrt{3}-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}