Evaluate
\frac{3\left(\sqrt{6}+2\right)}{2}\approx 6.674234614
Share
Copied to clipboard
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}
Rationalize the denominator of \frac{3\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}+2\sqrt{3}.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Consider \left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{9\times 2-\left(-2\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{18-\left(-2\sqrt{3}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{18-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{18-4\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{18-4\times 3}
The square of \sqrt{3} is 3.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{18-12}
Multiply 4 and 3 to get 12.
\frac{3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)}{6}
Subtract 12 from 18 to get 6.
\frac{1}{2}\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right)
Divide 3\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right) by 6 to get \frac{1}{2}\sqrt{3}\left(3\sqrt{2}+2\sqrt{3}\right).
\frac{1}{2}\sqrt{3}\times 3\sqrt{2}+\frac{1}{2}\sqrt{3}\times 2\sqrt{3}
Use the distributive property to multiply \frac{1}{2}\sqrt{3} by 3\sqrt{2}+2\sqrt{3}.
\frac{1}{2}\sqrt{3}\times 3\sqrt{2}+\frac{1}{2}\times 3\times 2
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3}{2}\sqrt{3}\sqrt{2}+\frac{1}{2}\times 3\times 2
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}\sqrt{6}+\frac{1}{2}\times 3\times 2
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3}{2}\sqrt{6}+\frac{3}{2}\times 2
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}\sqrt{6}+3
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}