Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{3}+1\right)\left(\sqrt{2}-\sqrt{7}\right)}{\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)}
Rationalize the denominator of \frac{3\sqrt{3}+1}{\sqrt{2}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{7}.
\frac{\left(3\sqrt{3}+1\right)\left(\sqrt{2}-\sqrt{7}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}+1\right)\left(\sqrt{2}-\sqrt{7}\right)}{2-7}
Square \sqrt{2}. Square \sqrt{7}.
\frac{\left(3\sqrt{3}+1\right)\left(\sqrt{2}-\sqrt{7}\right)}{-5}
Subtract 7 from 2 to get -5.
\frac{3\sqrt{3}\sqrt{2}-3\sqrt{3}\sqrt{7}+\sqrt{2}-\sqrt{7}}{-5}
Apply the distributive property by multiplying each term of 3\sqrt{3}+1 by each term of \sqrt{2}-\sqrt{7}.
\frac{3\sqrt{6}-3\sqrt{3}\sqrt{7}+\sqrt{2}-\sqrt{7}}{-5}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{6}-3\sqrt{21}+\sqrt{2}-\sqrt{7}}{-5}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\frac{-3\sqrt{6}+3\sqrt{21}-\sqrt{2}+\sqrt{7}}{5}
Multiply both numerator and denominator by -1.