Verify
true
Share
Copied to clipboard
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Rationalize the denominator of \frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}-2\sqrt{3}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Consider \left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)^{2}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Multiply 3\sqrt{2}-2\sqrt{3} and 3\sqrt{2}-2\sqrt{3} to get \left(3\sqrt{2}-2\sqrt{3}\right)^{2}.
\frac{9\left(\sqrt{2}\right)^{2}-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-2\sqrt{3}\right)^{2}.
\frac{9\times 2-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
The square of \sqrt{2} is 2.
\frac{18-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Multiply 9 and 2 to get 18.
\frac{18-12\sqrt{6}+4\left(\sqrt{3}\right)^{2}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{18-12\sqrt{6}+4\times 3}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
The square of \sqrt{3} is 3.
\frac{18-12\sqrt{6}+12}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Multiply 4 and 3 to get 12.
\frac{30-12\sqrt{6}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Add 18 and 12 to get 30.
\frac{30-12\sqrt{6}}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Expand \left(3\sqrt{2}\right)^{2}.
\frac{30-12\sqrt{6}}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Calculate 3 to the power of 2 and get 9.
\frac{30-12\sqrt{6}}{9\times 2-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
The square of \sqrt{2} is 2.
\frac{30-12\sqrt{6}}{18-\left(2\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Multiply 9 and 2 to get 18.
\frac{30-12\sqrt{6}}{18-2^{2}\left(\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Expand \left(2\sqrt{3}\right)^{2}.
\frac{30-12\sqrt{6}}{18-4\left(\sqrt{3}\right)^{2}}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Calculate 2 to the power of 2 and get 4.
\frac{30-12\sqrt{6}}{18-4\times 3}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
The square of \sqrt{3} is 3.
\frac{30-12\sqrt{6}}{18-12}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Multiply 4 and 3 to get 12.
\frac{30-12\sqrt{6}}{6}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Subtract 12 from 18 to get 6.
5-2\sqrt{6}+\frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11
Divide each term of 30-12\sqrt{6} by 6 to get 5-2\sqrt{6}.
5-2\sqrt{6}+\frac{2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=11
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
5-2\sqrt{6}+\frac{2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}=11
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-2\sqrt{6}+\frac{2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{3-2}=11
Square \sqrt{3}. Square \sqrt{2}.
5-2\sqrt{6}+\frac{2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{1}=11
Subtract 2 from 3 to get 1.
5-2\sqrt{6}+2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)=11
Anything divided by one gives itself.
5-2\sqrt{6}+2\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}=11
Use the distributive property to multiply 2\sqrt{3} by \sqrt{3}+\sqrt{2}.
5-2\sqrt{6}+2\times 3+2\sqrt{3}\sqrt{2}=11
The square of \sqrt{3} is 3.
5-2\sqrt{6}+6+2\sqrt{3}\sqrt{2}=11
Multiply 2 and 3 to get 6.
5-2\sqrt{6}+6+2\sqrt{6}=11
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
11-2\sqrt{6}+2\sqrt{6}=11
Add 5 and 6 to get 11.
11=11
Combine -2\sqrt{6} and 2\sqrt{6} to get 0.
\text{true}
Compare 11 and 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}