Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}
Rationalize the denominator of \frac{3\sqrt{2}}{4+\sqrt{2}} by multiplying numerator and denominator by 4-\sqrt{2}.
\frac{3\sqrt{2}\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{2}\left(4-\sqrt{2}\right)}{16-2}
Square 4. Square \sqrt{2}.
\frac{3\sqrt{2}\left(4-\sqrt{2}\right)}{14}
Subtract 2 from 16 to get 14.
\frac{12\sqrt{2}-3\left(\sqrt{2}\right)^{2}}{14}
Use the distributive property to multiply 3\sqrt{2} by 4-\sqrt{2}.
\frac{12\sqrt{2}-3\times 2}{14}
The square of \sqrt{2} is 2.
\frac{12\sqrt{2}-6}{14}
Multiply -3 and 2 to get -6.