Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. V
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{\left(3\sqrt{2}-2V\right)\left(3\sqrt{2}+2V\right)}
Rationalize the denominator of \frac{3\sqrt{2}}{3\sqrt{2}-2V} by multiplying numerator and denominator by 3\sqrt{2}+2V.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{\left(3\sqrt{2}\right)^{2}-\left(-2V\right)^{2}}
Consider \left(3\sqrt{2}-2V\right)\left(3\sqrt{2}+2V\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(-2V\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{9\left(\sqrt{2}\right)^{2}-\left(-2V\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{9\times 2-\left(-2V\right)^{2}}
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{18-\left(-2V\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{18-\left(-2\right)^{2}V^{2}}
Expand \left(-2V\right)^{2}.
\frac{3\sqrt{2}\left(3\sqrt{2}+2V\right)}{18-4V^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{9\left(\sqrt{2}\right)^{2}+6V\sqrt{2}}{18-4V^{2}}
Use the distributive property to multiply 3\sqrt{2} by 3\sqrt{2}+2V.
\frac{9\times 2+6V\sqrt{2}}{18-4V^{2}}
The square of \sqrt{2} is 2.
\frac{18+6V\sqrt{2}}{18-4V^{2}}
Multiply 9 and 2 to get 18.
\frac{6\left(\sqrt{2}V+3\right)}{2\left(-2V^{2}+9\right)}
Factor the expressions that are not already factored.
\frac{3\left(\sqrt{2}V+3\right)}{-2V^{2}+9}
Cancel out 2 in both numerator and denominator.
\frac{3\sqrt{2}V+9}{-2V^{2}+9}
Expand the expression.