Evaluate
-\frac{2\sqrt{3}}{3}+\frac{5}{2}-\sqrt{6}\approx -1.104190281
Share
Copied to clipboard
\frac{3\sqrt{2}}{2\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}-1}+\frac{2}{3-\sqrt{3}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3}{2}-\frac{\sqrt{3}}{\sqrt{2}-1}+\frac{2}{3-\sqrt{3}}
Cancel out \sqrt{2} in both numerator and denominator.
\frac{3}{2}-\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{2}{3-\sqrt{3}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{3}{2}-\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}+\frac{2}{3-\sqrt{3}}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{2}-\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{2-1}+\frac{2}{3-\sqrt{3}}
Square \sqrt{2}. Square 1.
\frac{3}{2}-\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{1}+\frac{2}{3-\sqrt{3}}
Subtract 1 from 2 to get 1.
\frac{3}{2}-\sqrt{3}\left(\sqrt{2}+1\right)+\frac{2}{3-\sqrt{3}}
Anything divided by one gives itself.
\frac{3}{2}-\sqrt{3}\left(\sqrt{2}+1\right)+\frac{2\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{3}{2}-\sqrt{3}\left(\sqrt{2}+1\right)+\frac{2\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{2}-\sqrt{3}\left(\sqrt{2}+1\right)+\frac{2\left(3+\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{3}{2}-\sqrt{3}\left(\sqrt{2}+1\right)+\frac{2\left(3+\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{3}{2}-\sqrt{3}\left(\sqrt{2}+1\right)+\frac{1}{3}\left(3+\sqrt{3}\right)
Divide 2\left(3+\sqrt{3}\right) by 6 to get \frac{1}{3}\left(3+\sqrt{3}\right).
\frac{3}{2}-\left(\sqrt{3}\sqrt{2}+\sqrt{3}\right)+\frac{1}{3}\left(3+\sqrt{3}\right)
Use the distributive property to multiply \sqrt{3} by \sqrt{2}+1.
\frac{3}{2}-\left(\sqrt{6}+\sqrt{3}\right)+\frac{1}{3}\left(3+\sqrt{3}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3}{2}-\sqrt{6}-\sqrt{3}+\frac{1}{3}\left(3+\sqrt{3}\right)
To find the opposite of \sqrt{6}+\sqrt{3}, find the opposite of each term.
\frac{3}{2}-\sqrt{6}-\sqrt{3}+\frac{1}{3}\times 3+\frac{1}{3}\sqrt{3}
Use the distributive property to multiply \frac{1}{3} by 3+\sqrt{3}.
\frac{3}{2}-\sqrt{6}-\sqrt{3}+1+\frac{1}{3}\sqrt{3}
Cancel out 3 and 3.
\frac{3}{2}-\sqrt{6}-\sqrt{3}+\frac{2}{2}+\frac{1}{3}\sqrt{3}
Convert 1 to fraction \frac{2}{2}.
\frac{3+2}{2}-\sqrt{6}-\sqrt{3}+\frac{1}{3}\sqrt{3}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{5}{2}-\sqrt{6}-\sqrt{3}+\frac{1}{3}\sqrt{3}
Add 3 and 2 to get 5.
\frac{5}{2}-\sqrt{6}-\frac{2}{3}\sqrt{3}
Combine -\sqrt{3} and \frac{1}{3}\sqrt{3} to get -\frac{2}{3}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}