Evaluate
\sqrt{2}\left(\sqrt{6}-3\right)\approx -0.778539072
Factor
\sqrt{2} {(\sqrt{2} \sqrt{3} - 3)} = -0.778539072
Share
Copied to clipboard
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{\left(\sqrt{3}+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{6}\right)}-\frac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}}
Rationalize the denominator of \frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{6}.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}}-\frac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}}
Consider \left(\sqrt{3}+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{3-6}-\frac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}}
Square \sqrt{3}. Square \sqrt{6}.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{-3}-\frac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}}
Subtract 6 from 3 to get -3.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{-3}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{-3}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{-3}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{3\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)}{-3}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
-\sqrt{2}\left(\sqrt{3}-\sqrt{6}\right)-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Cancel out -3 and -3.
-\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{6}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Use the distributive property to multiply -\sqrt{2} by \sqrt{3}-\sqrt{6}.
-\sqrt{6}+\sqrt{2}\sqrt{6}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{-4}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-\sqrt{6}+\sqrt{2}\sqrt{2}\sqrt{3}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-\sqrt{6}+2\sqrt{3}-\frac{4\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-\sqrt{6}+2\sqrt{3}-\left(-\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)\right)
Cancel out -4 and -4.
-\sqrt{6}+2\sqrt{3}-\left(-\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{6}\right)
Use the distributive property to multiply -\sqrt{3} by \sqrt{2}-\sqrt{6}.
-\sqrt{6}+2\sqrt{3}-\left(-\sqrt{6}+\sqrt{3}\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\sqrt{6}+2\sqrt{3}-\left(-\sqrt{6}+\sqrt{3}\sqrt{3}\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-\sqrt{6}+2\sqrt{3}-\left(-\sqrt{6}+3\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\sqrt{6}+2\sqrt{3}-\left(-\sqrt{6}\right)-3\sqrt{2}
To find the opposite of -\sqrt{6}+3\sqrt{2}, find the opposite of each term.
-\sqrt{6}+2\sqrt{3}+\sqrt{6}-3\sqrt{2}
The opposite of -\sqrt{6} is \sqrt{6}.
2\sqrt{3}-3\sqrt{2}
Combine -\sqrt{6} and \sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}