Verify
true
Share
Copied to clipboard
\frac{\sqrt{18}}{2\sqrt{12}}=\frac{\sqrt{18}}{2\sqrt{12}}
Cancel out 3 in both numerator and denominator.
\frac{3\sqrt{2}}{2\sqrt{12}}=\frac{\sqrt{18}}{2\sqrt{12}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}}{2\times 2\sqrt{3}}=\frac{\sqrt{18}}{2\sqrt{12}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{3\sqrt{2}}{4\sqrt{3}}=\frac{\sqrt{18}}{2\sqrt{12}}
Multiply 2 and 2 to get 4.
\frac{3\sqrt{2}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}=\frac{\sqrt{18}}{2\sqrt{12}}
Rationalize the denominator of \frac{3\sqrt{2}}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\sqrt{2}\sqrt{3}}{4\times 3}=\frac{\sqrt{18}}{2\sqrt{12}}
The square of \sqrt{3} is 3.
\frac{3\sqrt{6}}{4\times 3}=\frac{\sqrt{18}}{2\sqrt{12}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{6}}{12}=\frac{\sqrt{18}}{2\sqrt{12}}
Multiply 4 and 3 to get 12.
\frac{1}{4}\sqrt{6}=\frac{\sqrt{18}}{2\sqrt{12}}
Divide 3\sqrt{6} by 12 to get \frac{1}{4}\sqrt{6}.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{2}}{2\sqrt{12}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{2}}{2\times 2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{2}}{4\sqrt{3}}
Multiply 2 and 2 to get 4.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{2}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{2}}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{2}\sqrt{3}}{4\times 3}
The square of \sqrt{3} is 3.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{6}}{4\times 3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{1}{4}\sqrt{6}=\frac{3\sqrt{6}}{12}
Multiply 4 and 3 to get 12.
\frac{1}{4}\sqrt{6}=\frac{1}{4}\sqrt{6}
Divide 3\sqrt{6} by 12 to get \frac{1}{4}\sqrt{6}.
\frac{1}{4}\sqrt{6}-\frac{1}{4}\sqrt{6}=0
Subtract \frac{1}{4}\sqrt{6} from both sides.
0=0
Combine \frac{1}{4}\sqrt{6} and -\frac{1}{4}\sqrt{6} to get 0.
\text{true}
Compare 0 and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}