\frac { 3 \sqrt { 11 } } { 2 \sqrt { 98 } } \div \frac { 5 } { 7 | 22 }
Evaluate
\frac{33\sqrt{22}}{10}\approx 15.478372007
Share
Copied to clipboard
\frac{3\sqrt{11}\times 7|22|}{2\sqrt{98}\times 5}
Divide \frac{3\sqrt{11}}{2\sqrt{98}} by \frac{5}{7|22|} by multiplying \frac{3\sqrt{11}}{2\sqrt{98}} by the reciprocal of \frac{5}{7|22|}.
\frac{21\sqrt{11}|22|}{2\sqrt{98}\times 5}
Multiply 3 and 7 to get 21.
\frac{21\sqrt{11}\times 22}{2\sqrt{98}\times 5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 22 is 22.
\frac{462\sqrt{11}}{2\sqrt{98}\times 5}
Multiply 21 and 22 to get 462.
\frac{462\sqrt{11}}{2\times 7\sqrt{2}\times 5}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
\frac{462\sqrt{11}}{14\sqrt{2}\times 5}
Multiply 2 and 7 to get 14.
\frac{462\sqrt{11}}{70\sqrt{2}}
Multiply 14 and 5 to get 70.
\frac{33\sqrt{11}}{5\sqrt{2}}
Cancel out 14 in both numerator and denominator.
\frac{33\sqrt{11}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{33\sqrt{11}}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{33\sqrt{11}\sqrt{2}}{5\times 2}
The square of \sqrt{2} is 2.
\frac{33\sqrt{22}}{5\times 2}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{33\sqrt{22}}{10}
Multiply 5 and 2 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}