Solve for x
x=\frac{\sqrt{10}}{10}\approx 0.316227766
Graph
Share
Copied to clipboard
x\times 2^{\frac{1}{2}}\times 3\sqrt{10}=3\sqrt{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3\sqrt{2}\sqrt{10}x=3\sqrt{2}
Reorder the terms.
\sqrt{2}\sqrt{10}x=\sqrt{2}
Cancel out 3 on both sides.
\sqrt{2}\sqrt{2}\sqrt{5}x=\sqrt{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
2\sqrt{5}x=\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\sqrt{5}x}{2\sqrt{5}}=\frac{\sqrt{2}}{2\sqrt{5}}
Divide both sides by 2\sqrt{5}.
x=\frac{\sqrt{2}}{2\sqrt{5}}
Dividing by 2\sqrt{5} undoes the multiplication by 2\sqrt{5}.
x=\frac{\sqrt{10}}{10}
Divide \sqrt{2} by 2\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}