Solve for k
k=\frac{x}{\pi }-\frac{9}{4}
Solve for x
x=\pi k+\frac{9\pi }{4}
Graph
Share
Copied to clipboard
3\pi +4k\pi =4x-6\pi
Multiply both sides of the equation by 4, the least common multiple of 4,2.
4k\pi =4x-6\pi -3\pi
Subtract 3\pi from both sides.
4k\pi =4x-9\pi
Combine -6\pi and -3\pi to get -9\pi .
4\pi k=4x-9\pi
The equation is in standard form.
\frac{4\pi k}{4\pi }=\frac{4x-9\pi }{4\pi }
Divide both sides by 4\pi .
k=\frac{4x-9\pi }{4\pi }
Dividing by 4\pi undoes the multiplication by 4\pi .
k=\frac{x}{\pi }-\frac{9}{4}
Divide 4x-9\pi by 4\pi .
3\pi +4k\pi =4x-6\pi
Multiply both sides of the equation by 4, the least common multiple of 4,2.
4x-6\pi =3\pi +4k\pi
Swap sides so that all variable terms are on the left hand side.
4x=3\pi +4k\pi +6\pi
Add 6\pi to both sides.
4x=9\pi +4k\pi
Combine 3\pi and 6\pi to get 9\pi .
4x=4\pi k+9\pi
The equation is in standard form.
\frac{4x}{4}=\frac{\pi \left(4k+9\right)}{4}
Divide both sides by 4.
x=\frac{\pi \left(4k+9\right)}{4}
Dividing by 4 undoes the multiplication by 4.
x=\pi k+\frac{9\pi }{4}
Divide \pi \left(9+4k\right) by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}