Verify
false
Share
Copied to clipboard
\frac{\frac{24+1}{8}+\frac{1\times 4+1}{4}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply 3 and 8 to get 24.
\frac{\frac{25}{8}+\frac{1\times 4+1}{4}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 24 and 1 to get 25.
\frac{\frac{25}{8}+\frac{4+1}{4}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply 1 and 4 to get 4.
\frac{\frac{25}{8}+\frac{5}{4}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 4 and 1 to get 5.
\frac{\frac{25}{8}+\frac{10}{8}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Least common multiple of 8 and 4 is 8. Convert \frac{25}{8} and \frac{5}{4} to fractions with denominator 8.
\frac{\frac{25+10}{8}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Since \frac{25}{8} and \frac{10}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{35}{8}}{\frac{2\times 8+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 25 and 10 to get 35.
\frac{\frac{35}{8}}{\frac{16+5}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply 2 and 8 to get 16.
\frac{\frac{35}{8}}{\frac{21}{8}-\frac{1\times 4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 16 and 5 to get 21.
\frac{\frac{35}{8}}{\frac{21}{8}-\frac{4+3}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply 1 and 4 to get 4.
\frac{\frac{35}{8}}{\frac{21}{8}-\frac{7}{4}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 4 and 3 to get 7.
\frac{\frac{35}{8}}{\frac{21}{8}-\frac{14}{8}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Least common multiple of 8 and 4 is 8. Convert \frac{21}{8} and \frac{7}{4} to fractions with denominator 8.
\frac{\frac{35}{8}}{\frac{21-14}{8}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Since \frac{21}{8} and \frac{14}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{35}{8}}{\frac{7}{8}}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Subtract 14 from 21 to get 7.
\frac{35}{8}\times \frac{8}{7}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Divide \frac{35}{8} by \frac{7}{8} by multiplying \frac{35}{8} by the reciprocal of \frac{7}{8}.
\frac{35\times 8}{8\times 7}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply \frac{35}{8} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{35}{7}=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Cancel out 8 in both numerator and denominator.
5=\frac{\frac{1\times 7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Divide 35 by 7 to get 5.
5=\frac{\frac{7+5}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply 1 and 7 to get 7.
5=\frac{\frac{12}{7}\times \frac{1\times 5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 7 and 5 to get 12.
5=\frac{\frac{12}{7}\times \frac{5+2}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply 1 and 5 to get 5.
5=\frac{\frac{12}{7}\times \frac{7}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Add 5 and 2 to get 7.
5=\frac{\frac{12\times 7}{7\times 5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Multiply \frac{12}{7} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
5=\frac{\frac{12}{5}}{\frac{\frac{2\times 4+1}{4}}{\frac{3\times 3+1}{3}}}
Cancel out 7 in both numerator and denominator.
5=\frac{\frac{12}{5}}{\frac{\left(2\times 4+1\right)\times 3}{4\left(3\times 3+1\right)}}
Divide \frac{2\times 4+1}{4} by \frac{3\times 3+1}{3} by multiplying \frac{2\times 4+1}{4} by the reciprocal of \frac{3\times 3+1}{3}.
5=\frac{\frac{12}{5}}{\frac{\left(8+1\right)\times 3}{4\left(3\times 3+1\right)}}
Multiply 2 and 4 to get 8.
5=\frac{\frac{12}{5}}{\frac{9\times 3}{4\left(3\times 3+1\right)}}
Add 8 and 1 to get 9.
5=\frac{\frac{12}{5}}{\frac{27}{4\left(3\times 3+1\right)}}
Multiply 9 and 3 to get 27.
5=\frac{\frac{12}{5}}{\frac{27}{4\left(9+1\right)}}
Multiply 3 and 3 to get 9.
5=\frac{\frac{12}{5}}{\frac{27}{4\times 10}}
Add 9 and 1 to get 10.
5=\frac{\frac{12}{5}}{\frac{27}{40}}
Multiply 4 and 10 to get 40.
5=\frac{12}{5}\times \frac{40}{27}
Divide \frac{12}{5} by \frac{27}{40} by multiplying \frac{12}{5} by the reciprocal of \frac{27}{40}.
5=\frac{12\times 40}{5\times 27}
Multiply \frac{12}{5} times \frac{40}{27} by multiplying numerator times numerator and denominator times denominator.
5=\frac{480}{135}
Do the multiplications in the fraction \frac{12\times 40}{5\times 27}.
5=\frac{32}{9}
Reduce the fraction \frac{480}{135} to lowest terms by extracting and canceling out 15.
\frac{45}{9}=\frac{32}{9}
Convert 5 to fraction \frac{45}{9}.
\text{false}
Compare \frac{45}{9} and \frac{32}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}