\frac { 3 \frac { 1 } { 5 } : 0,4 } { 3 } : 2 \frac { 1 } { 2 } - \frac { 1 } { 15 }
Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{\frac{3\times 5+1}{5}}{0,4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Divide \frac{\frac{\frac{3\times 5+1}{5}}{0,4}}{3} by \frac{2\times 2+1}{2} by multiplying \frac{\frac{\frac{3\times 5+1}{5}}{0,4}}{3} by the reciprocal of \frac{2\times 2+1}{2}.
\frac{\frac{3\times 5+1}{5\times 0,4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Express \frac{\frac{3\times 5+1}{5}}{0,4} as a single fraction.
\frac{\frac{15+1}{5\times 0,4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Multiply 3 and 5 to get 15.
\frac{\frac{16}{5\times 0,4}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Add 15 and 1 to get 16.
\frac{\frac{16}{2}\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Multiply 5 and 0,4 to get 2.
\frac{8\times 2}{3\left(2\times 2+1\right)}-\frac{1}{15}
Divide 16 by 2 to get 8.
\frac{16}{3\left(2\times 2+1\right)}-\frac{1}{15}
Multiply 8 and 2 to get 16.
\frac{16}{3\left(4+1\right)}-\frac{1}{15}
Multiply 2 and 2 to get 4.
\frac{16}{3\times 5}-\frac{1}{15}
Add 4 and 1 to get 5.
\frac{16}{15}-\frac{1}{15}
Multiply 3 and 5 to get 15.
\frac{16-1}{15}
Since \frac{16}{15} and \frac{1}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{15}
Subtract 1 from 16 to get 15.
1
Divide 15 by 15 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}