Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\times 4+1\right)\times 4}{4\left(2\times 4+1\right)}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Divide \frac{3\times 4+1}{4} by \frac{2\times 4+1}{4} by multiplying \frac{3\times 4+1}{4} by the reciprocal of \frac{2\times 4+1}{4}.
\frac{1+3\times 4}{1+2\times 4}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Cancel out 4 in both numerator and denominator.
\frac{1+12}{1+2\times 4}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Multiply 3 and 4 to get 12.
\frac{13}{1+2\times 4}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Add 1 and 12 to get 13.
\frac{13}{1+8}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Multiply 2 and 4 to get 8.
\frac{13}{9}=\frac{\frac{19\times 2+1}{2}}{\frac{11\times 4+1}{4}}
Add 1 and 8 to get 9.
\frac{13}{9}=\frac{\left(19\times 2+1\right)\times 4}{2\left(11\times 4+1\right)}
Divide \frac{19\times 2+1}{2} by \frac{11\times 4+1}{4} by multiplying \frac{19\times 2+1}{2} by the reciprocal of \frac{11\times 4+1}{4}.
\frac{13}{9}=\frac{2\left(1+2\times 19\right)}{1+4\times 11}
Cancel out 2 in both numerator and denominator.
\frac{13}{9}=\frac{2\left(1+38\right)}{1+4\times 11}
Multiply 2 and 19 to get 38.
\frac{13}{9}=\frac{2\times 39}{1+4\times 11}
Add 1 and 38 to get 39.
\frac{13}{9}=\frac{78}{1+4\times 11}
Multiply 2 and 39 to get 78.
\frac{13}{9}=\frac{78}{1+44}
Multiply 4 and 11 to get 44.
\frac{13}{9}=\frac{78}{45}
Add 1 and 44 to get 45.
\frac{13}{9}=\frac{26}{15}
Reduce the fraction \frac{78}{45} to lowest terms by extracting and canceling out 3.
\frac{65}{45}=\frac{78}{45}
Least common multiple of 9 and 15 is 45. Convert \frac{13}{9} and \frac{26}{15} to fractions with denominator 45.
\text{false}
Compare \frac{65}{45} and \frac{78}{45}.