Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{\frac{12+1}{4}+\frac{1}{2}}{\frac{3\times 3+1}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Multiply 3 and 4 to get 12.
\frac{\frac{13}{4}+\frac{1}{2}}{\frac{3\times 3+1}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Add 12 and 1 to get 13.
\frac{\frac{13}{4}+\frac{2}{4}}{\frac{3\times 3+1}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Least common multiple of 4 and 2 is 4. Convert \frac{13}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{\frac{13+2}{4}}{\frac{3\times 3+1}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Since \frac{13}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{15}{4}}{\frac{3\times 3+1}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Add 13 and 2 to get 15.
\frac{\frac{15}{4}}{\frac{9+1}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Multiply 3 and 3 to get 9.
\frac{\frac{15}{4}}{\frac{10}{3}\left(\frac{1\times 6+5}{6}-\frac{1\times 12+1}{12}\right)}
Add 9 and 1 to get 10.
\frac{\frac{15}{4}}{\frac{10}{3}\left(\frac{6+5}{6}-\frac{1\times 12+1}{12}\right)}
Multiply 1 and 6 to get 6.
\frac{\frac{15}{4}}{\frac{10}{3}\left(\frac{11}{6}-\frac{1\times 12+1}{12}\right)}
Add 6 and 5 to get 11.
\frac{\frac{15}{4}}{\frac{10}{3}\left(\frac{11}{6}-\frac{12+1}{12}\right)}
Multiply 1 and 12 to get 12.
\frac{\frac{15}{4}}{\frac{10}{3}\left(\frac{11}{6}-\frac{13}{12}\right)}
Add 12 and 1 to get 13.
\frac{\frac{15}{4}}{\frac{10}{3}\left(\frac{22}{12}-\frac{13}{12}\right)}
Least common multiple of 6 and 12 is 12. Convert \frac{11}{6} and \frac{13}{12} to fractions with denominator 12.
\frac{\frac{15}{4}}{\frac{10}{3}\times \frac{22-13}{12}}
Since \frac{22}{12} and \frac{13}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{15}{4}}{\frac{10}{3}\times \frac{9}{12}}
Subtract 13 from 22 to get 9.
\frac{\frac{15}{4}}{\frac{10}{3}\times \frac{3}{4}}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{\frac{15}{4}}{\frac{10\times 3}{3\times 4}}
Multiply \frac{10}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{15}{4}}{\frac{10}{4}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{15}{4}}{\frac{5}{2}}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{15}{4}\times \frac{2}{5}
Divide \frac{15}{4} by \frac{5}{2} by multiplying \frac{15}{4} by the reciprocal of \frac{5}{2}.
\frac{15\times 2}{4\times 5}
Multiply \frac{15}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{30}{20}
Do the multiplications in the fraction \frac{15\times 2}{4\times 5}.
\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}